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Abstract

Given certain compactly supported functions g € Lz(]R{d) whose
Z%-translates form a partition of unity, and real invertible d x d matri-
ces B, C for which ||CT B|| is sufficiently small, we prove that the Ga-
bor system {EpmTong}m neze forms a frame, with a (non-canonical)
dual Gabor frame generated by an explicitly given finite linear combi-
nation of shifts of g. For functions g of the above type and arbitrary
real invertible d x d matrices B, C this result leads to a construction
of a multi-Gabor frame {EpunTongk}mnezd ker, Where all the gen-
erators g are dilated and translated versions of g. Again, the dual
generators have a similar form, and are given explicitly. Our concrete
examples concern box splines.

1 Introduction

For y € RY, the translation operator T, and the modulation operator F,, are
defined by

(T,/)(x) = flz—y), veR’
(Byf)(@) = e f(z), xeRY,
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where y -  denotes the inner product between y and z in R?. Given two
real and invertible d x d matrices B and C' we consider Gabor systems of the
form

{EBmTCng}m,neZd = {QQWiBm.xg(x - Cn)}m,nGZd'

Our purpose is to construct a class of Gabor frames with generators that are
easy to use in practice, and having the additional property that we can find
a dual generator of the form

h = Z Ckag

for some finite set F C Z? and explicitly given scalar coefficients c,. One
advantage of this is that the decay of the dual generator h in the frequency do-
main is controlled by the decay of g. Our results extend the one-dimensional
results in [2]. As we will see, the extension is non-trivial: it is not clear
from the one-dimensional version how one has to define the dual generators
in higher dimensions.

Our approach is strongly connected with the results by Janssen [5], [6],
Labate [7], Hernandez, Labate and Weiss [4], and Ron and Shen [8],[9].
However, in contrast to these papers, the focus is on explicit constructions
rather than general characterizations. For more information about Gabor
systems and their role in time-frequency analysis we refer to the book [3] by
Grochenig; for general frame theory we refer to [1].

In the rest of the introduction we collect a few conventions about notation
and a basic result for obtaining a pair of dual frames. The dilation operator
associated with a real d x d matrix C' is

(Dof)(z) = | det C|V?f(Cx), € R
Let CT denote the transpose of a matrix C; then
D¢E, = EcryDe, DcTy,=Te,De.
If C' is invertible, we use the notation
Ct = (CT)™1,

For f € (L' N L?) (RY) we denote the Fourier transform by
Ff) =)= [ fla)e* ™ da.
R
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As usual, the Fourier transform is extended to a unitary operator on L?(IR%).
The reader can check that

Flor = E_cpF.

We conclude the introduction by stating a special case of a result from
[4]; it will form the basis for all the results presented in the paper. Let

D:={f e L*R?Y: f e L®(R?) and supp/ is compact}.

Lemma 1.1 Let B be an invertible d x d matriz, and let {g,}neza and
{hn}neza be collections of functions in L*(R?). Assume that {Tpmgntmnecza
and {Tpmha }mneza are Bessel sequences and that for all f € D,

S / N Bl )Py < oo (1)

neZd meza
Sy / FOy + Brm) Pl ()Pdy < oo, )
nezd mezd suppf

Then {Tpmgntmmneczd and {Temhn}mneze are dual frames for L*(R?) if and
only if

Z Jk(y — Bifn)hi(7y) = | det B|d,, a.e,

kezd

for alln € 74,

2 Dual pairs of Gabor frames

We first prove a time-domain version of Lemma 1.1 for Gabor systems. As
we will see, we can remove the technical conditions (1) and (2) in the Gabor
case. We begin with a Lemma.

Lemma 2.1 Let g € L*(RY) and assume that B and C' are invertible matri-
ces. Then for all f € D,

S [ 1 BmPlaty - Py < oo,
suppf

n€Z4 meZd



Proof. Let f € D. Then

S If+Bm)P < sup Y [f(y+ B'm)’ (3)

d
mezd YEBHOY g

Independently of the choice of v € B*[0,1]%, only a fixed finite number of
m € 74 will give non-zero contributions to the sum on the right-hand side of
(3); since f is bounded, this implies that there exists a constant K such that

S 1i(+ Bl < K, ace .

meZd

Hence,

S5 [ 1 BmPlet - Py
suppf

n€Z4 mezd
— [ S i BmE Y lo - )Py
suppf |, c7a n€zd
<K/ > lgly — Cn)Pdy.
suppf |

Choose an integer a > 0 such that

suppf C C[—a, a]".

Then
/ > lg(y = Cn)Pdy / > lgly — Cn)Pdy
suppf | 4 Cl-aa? | “7a
< ]detC\/ Z 19(C(& = n))|2de.
a,al? nezs
Now, using that (modulo null-sets)
—ad'= U k+[0.1)

k€[—a,a—1]9NZ4



and that the function & — > 4 [g(C(§ — n))|? is Z%-periodic,

/[_ ]Zlg —n))[*d¢

nezd

=o' [ 3 lo(cle - m)fas

nezd

=)' [ lg(ce)Pae
~ et @) [ o) < o

O

The following is the frame-pair version of Corollary 3.3 in [7]. It can also
be considered as the time-domain version of Lemma 1.1. Results of that type
already appeared in [8] by Ron and Shen, and (in the one-dimensional case)
in [5] by Janssen. We provide the short proof for the sake of completeness.

Lemma 2.2 Two Bessel sequences { EpmTcong}mnezd and { EpmTonh}mnezd
form dual frames for L*(R?) if and only if

> g(z — Bin — Ck)h(x — Ck) = | det Bd,,. (4)
kezd
Proof. We note that {EpmTong}tmneze and {EppTenh}m, neza form dual
frames if and only if {F 'Ep,Tengtmneze and {F ' EpnTonh} ez are

dual frames. Now, F 'Eg,Tong = T_pmF Tong; thus, the result follows
from Lemma 1.1 and Lemma 2.1 with g, = F 'Tcyng, by, = F 1 Tenh. O

We now present the first version of our results. For simplicity we consider
the case C'= I. For any d x d matrix we define the norm ||B|| by

||B[| = sup |[|Buz]|.

||zf]=1

Theorem 2.3 Let N € N. Let g € L*(R?) be a real-valued bounded function
with supp g C [0, N|?, for which

Zg(x—n):l.

nezd



Assume that the d x d matriz B is invertible and ||B|| < m. For
i1 =1,...,d, let F; be the set of lattice points {kj}?zl € Z% for which the
coordinates kj,j = 1,...,d, satisfy the requirements
ifj=1,...,1—1, then |k;j| <N —1;
ifj=i, thenl<k <N —1; (5)
ifj=1+1,...,d, then k; = 0.
Define h € L*(R?) by

d

h(z):=|det B| |g(x) +2> > gla+k)|. (6)

1=1 keF;

Then the function g and the function h generate dual frames { EpmT5,9}m nezd
and {EpmTyh}ppnega for L*(RY).

Proof. We apply Lemma 2.2. Since B is invertible, for any n € Z¢ we have
[n| = ||B" B*n|| < ||BI| ||B*nl;

thus, for n # 0, ||B*n|| > 1/||B||. Note that with the definition (6), we have
supph C [=N + 1,2N — 1]%; thus (4) is satisfied for n # 0 if 1/||B|| >
VA(2N — 1), ie., if

1

||B||§m

Thus, we only need to check that
Z g(x — k)h(z — k) = | det B|, z € [0,1]%
keZd
due to the compact support of g, this is equivalent to
> gl@+n)h(z+n)=|det B|, x € [0,1]". (7)
n€l0,N—1]¢nz
To check that (7) holds, we use that for x € [0,1]%,

Z glx+n)=1. (8)

n€f0,N—1)4nzd



For n:={n;}{_, € [0,N —1]NZ% and i = 1,...,d, let E} denote the set
of lattice points {k; }?:1 € Z% whose coordinates k; satisfy the requirements

ifj=1,...,e—1, then 0 < k; <N —1;
if j =4, thenn; +1<k; <N —1;
lf]:Z+1,,d, thenk‘j:nj.

Define h, € L*(R?) by

d

ho(z) := |detB| g(m~|—n)~|—222g(x~l—k)

i=1 keEp

We now consider the finite set [0, N — 1]¢NZ?. Using lexicographic ordering,
i.€e.

(7;17 v >id) > (jla <. 7jd)

& (ig > ja) V ((ta = ja) A (ta-1 > ja-1)) V -+

V((ig = ja) A\ A (i2 = ja) N > J1),
we write

[0,N —19NZ = {n1,na, -+ ,nya},

with n; < ny for j < k. Then for z € [0,1]%, (8) implies that

Nd 2
1 = Z g(z +n;)
j=1

= (g9(z+n)+gl@+n) +- 4 g+ nya)) X
(9(x +n1) + g(x +ng) + - + g(x + nya))
= g(z+nm)glz + )+ 29(x + n2) + 29(x + n3) + - - - + 2g(x + nya)]
+9(z + n2)[g(z + n2) + 29(x + n3) + 29(x + na) + -+ + 29(x + nya)]

Tt

+g(z+nya_i)[g(z +nya_y) + 29(x + nya)]

+9(x + nya)lg(x + nya)]

1 N
= et D] Zg(x + 1), ().
j=1




It remains to show that for z € [0,1]¢ and n = {n;}{_, € [0, N —1]YNZ,

h(z 4+ n) = h,(z).

In order to do so, it is sufficient to show that for any i = 1,...,d,
dglwtntk)y=Y gle+k), zel0,1) (9)
keF; keE?

Fixie {1,...,d}. If 1 < j <, then

{nj+k:j:{k:j}?:1€Fi} = [n]—N“‘l,?’LJ—i-N—l]ﬂZ (10)
> [0,N—-1]NZ.

If j =1, then
{nj + /{Zj : {kj}?:l € Fz} = [nj + 1,nj + N — 1] NZ (11)
If 5 > i, then

{n; + &« {k;}j € Fi} = {n;}.
Via the definition of the set £} this shows that

Bl C{n+k:k={k}, €F} (12)

In order to show that we have equality in (9), we again fix i € {1,...,d}.
Suppose that m := {m;}I_; € {n+k: k = {k;}}_, € F;} \ E". Then either,
by (10), there exists j € {1,...,7 — 1} such that

m; =n;+k; ¢ [0,N—1]NZ;
or, by (11),
m; = TLZ—F/{?z S ([1 + N, Ny + N — 1] \ [1 +7lj,N - 1])ﬂZ = [N, le—i‘N—l]ﬂZ.

In both cases, since suppg C [0, N]|%, this implies that g(z + m) = 0 for
x € [0, 1]%. Hence,

Zg(m+n~l—k): Zg(x+k),

kEF; ke Ep

as desired. 0
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Figure 1: The sets F; (marked by OJ) and F; (marked by () corresponding
to N =3 and d = 2.

Example 2.4 For d = 1, the Gabor system considered in Theorem 2.3 is
{EmpT0g}mnez for some b > 0. The reader can check that

Flz{l,,N—]_},

thus, the expression for the dual generator h in (6) is

N-1

h(z) =bg(x) +2b )  g(z+k).

k=1

This result corresponds to the one-dimensional case treated in [2].
For d = 2, (5) leads to the sets

Fi = {(k,k))€Z? 1<k <N—1,ky =0},
Fy = {(ki,ks) €Z% |ki| < N—1,1<ky <N —1}.
For N = 3, the sets F; and F, are marked on Figure 1.

Via a change of variable Theorem 2.3 leads to a construction of frames of
the type {EpmTcng}mneze and convenient duals:



Theorem 2.5 Let N € N. Let g € L*(R?) be a real-valued bounded function
with supp g C [0, N]¢, for which

Zg(:c—n)zl.

Let B and C be invertible d x d matrices such that ||CTB|| < Tl)’ and
let (with the sets F; defined as in Theorem 2.3)

h(z) = | det(CT B)| +2ZZ (z + k) (13)

i=1 keF;

Then the function Dc-1g and the function Do-1h generate dual Gabor frames
{EBmTCnDC—lg}m,nGZd and {EBmTCnDC—l h}m,nEZd fOT’ LQ(Rd)

Proof. By assumptions and Theorem 2.3, the Gabor systems { Ecr g, 109} nezd
and {Ecr gy Tnh}mneze form dual frames; since

De-1EcrpmTn = EpnlconDo-1,
the result follows from Dg-1 being unitary. 0

For functions g of the above type and arbitrary real invertible d x d ma-
trices B and C, Theorem 2.5 leads to a construction of a (finitely generated)
multi-Gabor frame {EpynTongk }mnezd ker, Where all the generators g, are
dilated and translated versions of g. Again, the dual generators have a similar
form, and are given explicitly:

Theorem 2.6 Let N € N. Let g € L*(R%) be a real-valued bounded function
with supp g C [0, N]?, for which

Zg(x—n)zl.

nezd

Let B and C be invertible d X d matrices and choose J € N such that
J > ||CTB|| Vd(2N —1). Define the function h by (13). Then the functions

gk = TreyDyo1g. h =Ty Dye-1h, k€ 2400, J — 1)

generate dual multi-Gabor frames { EpmTongr }mnezd kezino,j—1)4 and
{EBmTCnhk}m,nEZd,kEZdﬂ[O,J—l}d fOT L2<Rd>
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Proof. The choice of J implies that the matrices B and %C’ satisfy the
conditions in Theorem 2.5; thus

) 1 , 1
{eQMBm"”(DJC_lg)(:c — an)}m’nezd and {eZMBm“(DJC_l h)(x — an)}m,nGZd

form a pair of dual Gabor frames for L*(R?). Now,

1 1
—Cn} = {—Ck + Cn} )
{J nezd U d J nezad

kezn[o,J—1]
Thus
1 1
(Djc-19)(- — 5Cn) = U (Dyc-19)(- = =Ck — Cn)
J J nezd

nezs kezdn[o,J—1]d

- U A{menyabesl)]

nezd
kezino,J—1]¢

Inserting this into the expression for the pair of dual frames leads to the
result. O

Note that multi-generated Gabor system have appeared in various appli-
cations for a long time, see, e.g., [10].

Via our results we now construct Gabor frames for L?(R?) with box spline
generators and dual generators having a similar form.

Example 2.7 Let By be the one-dimensional B-spline of order 2 defined by

x, x € 0,1[;
By(x) =] 2—uz, z€l,2];
0, x ¢ 0,2
Define g € L*(R?) by
9(w,y) = Ba(x) Ba(y); (14)

then suppg C [0, 2%, and

Zg(x—n):l, r € R?

nez?

11
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since the integer-translates of By form a partition of unity. Let the 2 x 2

matrices B and C' be defined by

1 /11 10
BZE(O 1>’C:<1 1>'

A direct calculation shows that

1 /1 2 2 1 /1 2 cos 8
T 2 o . _
st = i (o D =swllw (o 1) (o)
1)\? )
= E (\/§+1) .
Thus 3
|CTB||Vd(2N — 1) = 10(2+f)_102

Thus we can apply Theorem 2.6 with J = 2. Define the function h € L*(R?)

by (13), i.e
h(z,y) = [det(CTB)l[g(z,y) + 29((z,y) + (1,0))
+ 29((z,9) + (=1,1)) +29((z,y) + (0,1)) + 2
( 20y + 2042y +2, (x,y)€[—1,0[x[-1,0[;

2x + 2, (;E,y) € [—-1,0[x]0, 1];
dr —2zxy +4 -2y, (x,y) € [—1,0[x][1,2];
2y + 2, (x,y) € [0,1[x[-1,0[;
—xy + 2, (z,y) € [0,1[x]0, 1];

1) e tay+4-2y, (v,y)€[0,1[x[1,2[;

~ 10 w2 (z,y) € [1,2[x[~1,0];
—xy + 2, (x,y) € [1,2[x]0, 1];
—2x +axy+4—2y, (z,y)€[l,2[x][1,2[;
6y + 6 — 22y — 2z, (x,y) € [2,3[x[—1,0];
6 — 6y — 2z + 2zy, (x,y) € [2,3[x]0,1];
0, otherw1se

\

By Theorem 2.6, the four functions
gk = TicpDac1g, k€ Z2N[0,1]7

9((z,y) + (1,1))]
0

(15)

(16)

generate a multi-Gabor frame { Epy, Tongr fmnez2 kezzno)2, With a dual frame

{EBmTCnhk}m,neZ2,keZ2m[0,1]2 s where

hi, = TicpDac—1h, k € Z° N[0, 1],

13

(17)



Example 2.8 Similar calculations can be performed for any tensor product
of B-splines. On Figure 3 we plot the box spline g(z,y) = Bs(z)Bs(y) and
the function h in (13) for the choice

1 /11 10
BZE(O 1)’02(1 1>'

Acknowledgment: The authors thank Joachim Stockler for proposing to
use lexicographic ordering, and the referees for many suggestions, leading to
improvements of the presentation.
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