Pairs of explicitly given dual Gabor frames in $L^{2}\left(\mathbb{R}^{d}\right)$

Ole Christensen, Rae Young Kim*

Abstract

Given certain compactly supported functions $g \in L^{2}\left(\mathbb{R}^{d}\right)$ whose \mathbb{Z}^{d}-translates form a partition of unity, and real invertible $d \times d$ matrices B, C for which $\left\|C^{T} B\right\|$ is sufficiently small, we prove that the Gabor system $\left\{E_{B m} T_{C n} g\right\}_{m, n \in \mathbb{Z}^{d}}$ forms a frame, with a (non-canonical) dual Gabor frame generated by an explicitly given finite linear combination of shifts of g. For functions g of the above type and arbitrary real invertible $d \times d$ matrices B, C this result leads to a construction of a multi-Gabor frame $\left\{E_{B m} T_{C n} g_{k}\right\}_{m, n \in \mathbb{Z}^{d}, k \in \mathcal{F}}$, where all the generators g_{k} are dilated and translated versions of g. Again, the dual generators have a similar form, and are given explicitly. Our concrete examples concern box splines.

1 Introduction

For $y \in \mathbb{R}^{d}$, the translation operator T_{y} and the modulation operator E_{y} are defined by

$$
\begin{aligned}
& \left(T_{y} f\right)(x)=f(x-y), \quad x \in \mathbb{R}^{d}, \\
& \left(E_{y} f\right)(x)=e^{2 \pi i y \cdot x} f(x), \quad x \in \mathbb{R}^{d},
\end{aligned}
$$

[^0]where $y \cdot x$ denotes the inner product between y and x in \mathbb{R}^{d}. Given two real and invertible $d \times d$ matrices B and C we consider Gabor systems of the form
$$
\left\{E_{B m} T_{C n} g\right\}_{m, n \in \mathbb{Z}^{d}}=\left\{e^{2 \pi i B m \cdot x} g(x-C n)\right\}_{m, n \in \mathbb{Z}^{d}}
$$

Our purpose is to construct a class of Gabor frames with generators that are easy to use in practice, and having the additional property that we can find a dual generator of the form

$$
h=\sum_{k \in \mathcal{F}} c_{k} T_{k} g
$$

for some finite set $\mathcal{F} \subset \mathbb{Z}^{d}$ and explicitly given scalar coefficients c_{k}. One advantage of this is that the decay of the dual generator h in the frequency domain is controlled by the decay of \hat{g}. Our results extend the one-dimensional results in [2]. As we will see, the extension is non-trivial: it is not clear from the one-dimensional version how one has to define the dual generators in higher dimensions.

Our approach is strongly connected with the results by Janssen [5], [6], Labate [7], Hernandez, Labate and Weiss [4], and Ron and Shen [8],[9]. However, in contrast to these papers, the focus is on explicit constructions rather than general characterizations. For more information about Gabor systems and their role in time-frequency analysis we refer to the book [3] by Gröchenig; for general frame theory we refer to [1].

In the rest of the introduction we collect a few conventions about notation and a basic result for obtaining a pair of dual frames. The dilation operator associated with a real $d \times d$ matrix C is

$$
\left(D_{C} f\right)(x)=|\operatorname{det} C|^{1 / 2} f(C x), \quad x \in \mathbb{R}^{d}
$$

Let C^{T} denote the transpose of a matrix C; then

$$
D_{C} E_{y}=E_{C^{T} y} D_{C}, \quad D_{C} T_{y}=T_{C^{-1} y} D_{C}
$$

If C is invertible, we use the notation

$$
C^{\sharp}=\left(C^{T}\right)^{-1} .
$$

For $f \in\left(L^{1} \cap L^{2}\right)\left(\mathbb{R}^{d}\right)$ we denote the Fourier transform by

$$
\mathcal{F} f(\gamma)=\hat{f}(\gamma)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i x \cdot \gamma} d x
$$

As usual, the Fourier transform is extended to a unitary operator on $L^{2}\left(\mathbb{R}^{d}\right)$. The reader can check that

$$
\mathcal{F} T_{C k}=E_{-C k} \mathcal{F}
$$

We conclude the introduction by stating a special case of a result from [4]; it will form the basis for all the results presented in the paper. Let

$$
\mathcal{D}:=\left\{f \in L^{2}\left(\mathbb{R}^{d}\right): \hat{f} \in L^{\infty}\left(\mathbb{R}^{d}\right) \text { and } \operatorname{supp} \hat{f} \text { is compact }\right\}
$$

Lemma 1.1 Let B be an invertible $d \times d$ matrix, and let $\left\{g_{n}\right\}_{n \in \mathbb{Z}^{d}}$ and $\left\{h_{n}\right\}_{n \in \mathbb{Z}^{d}}$ be collections of functions in $L^{2}\left(\mathbb{R}^{d}\right)$. Assume that $\left\{T_{B m} g_{n}\right\}_{m, n \in \mathbb{Z}^{d}}$ and $\left\{T_{B m} h_{n}\right\}_{m, n \in \mathbb{Z}^{d}}$ are Bessel sequences and that for all $f \in \mathcal{D}$,

$$
\begin{align*}
& \sum_{n \in \mathbb{Z}^{d}} \sum_{m \in \mathbb{Z}^{d}} \int_{\text {supp } \hat{f}}\left|\hat{f}\left(\gamma+B^{\sharp} m\right)\right|^{2}\left|\hat{g}_{n}(\gamma)\right|^{2} d \gamma<\infty, \tag{1}\\
& \sum_{n \in \mathbb{Z}^{d}} \sum_{m \in \mathbb{Z}^{d}} \int_{\text {supp } \hat{f}}\left|\hat{f}\left(\gamma+B^{\sharp} m\right)\right|^{2}\left|\hat{h}_{n}(\gamma)\right|^{2} d \gamma<\infty . \tag{2}
\end{align*}
$$

Then $\left\{T_{B m} g_{n}\right\}_{m, n \in \mathbb{Z}^{d}}$ and $\left\{T_{B m} h_{n}\right\}_{m, n \in \mathbb{Z}^{d}}$ are dual frames for $L^{2}\left(\mathbb{R}^{d}\right)$ if and only if

$$
\sum_{k \in \mathbb{Z}^{d}} \overline{\hat{g}_{k}\left(\gamma-B^{\sharp} n\right)} \hat{h}_{k}(\gamma)=|\operatorname{det} B| \delta_{n, 0}, \text { a.e. } \gamma,
$$

for all $n \in \mathbb{Z}^{d}$.

2 Dual pairs of Gabor frames

We first prove a time-domain version of Lemma 1.1 for Gabor systems. As we will see, we can remove the technical conditions (1) and (2) in the Gabor case. We begin with a Lemma.

Lemma 2.1 Let $g \in L^{2}\left(\mathbb{R}^{d}\right)$ and assume that B and C are invertible matrices. Then for all $f \in \mathcal{D}$,

$$
\sum_{n \in \mathbb{Z}^{d}} \sum_{m \in \mathbb{Z}^{d}} \int_{\text {suppf}}\left|\hat{f}\left(\gamma+B^{\sharp} m\right)\right|^{2}|g(\gamma-C n)|^{2} d \gamma<\infty .
$$

Proof. Let $f \in \mathcal{D}$. Then

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}^{d}}\left|\hat{f}\left(\gamma+B^{\sharp} m\right)\right|^{2} \leq \sup _{\gamma \in B^{\sharp}[0,1]^{d}} \sum_{m \in \mathbb{Z}^{d}}\left|\hat{f}\left(\gamma+B^{\sharp} m\right)\right|^{2} . \tag{3}
\end{equation*}
$$

Independently of the choice of $\gamma \in B^{\sharp}[0,1]^{d}$, only a fixed finite number of $m \in \mathbb{Z}^{d}$ will give non-zero contributions to the sum on the right-hand side of (3); since \hat{f} is bounded, this implies that there exists a constant K such that

$$
\sum_{m \in \mathbb{Z}^{d}}\left|\hat{f}\left(\gamma+B^{\sharp} m\right)\right|^{2} \leq K \text {, a.e } \gamma \text {. }
$$

Hence,

$$
\begin{aligned}
& \sum_{n \in \mathbb{Z}^{d}} \sum_{m \in \mathbb{Z}^{d}} \int_{\text {supp } \hat{f}}\left|\hat{f}\left(\gamma+B^{\sharp} m\right)\right|^{2}|g(\gamma-C n)|^{2} d \gamma \\
& =\int_{\operatorname{supp} \hat{f}} \sum_{m \in \mathbb{Z}^{d}}\left|\hat{f}\left(\gamma+B^{\sharp} m\right)\right|^{2} \sum_{n \in \mathbb{Z}^{d}}|g(\gamma-C n)|^{2} d \gamma \\
& \leq K \int_{\operatorname{supp} \hat{f} \hat{n}} \sum_{n \in \mathbb{Z}^{d}}|g(\gamma-C n)|^{2} d \gamma .
\end{aligned}
$$

Choose an integer $a>0$ such that

$$
\operatorname{supp} \hat{f} \subseteq C[-a, a]^{d}
$$

Then

$$
\begin{aligned}
\int_{\operatorname{supp} \hat{f} \hat{f}} \sum_{n \in \mathbb{Z}^{d}}|g(\gamma-C n)|^{2} d \gamma & \leq \int_{C[-a, a]^{d}} \sum_{n \in \mathbb{Z}^{d}}|g(\gamma-C n)|^{2} d \gamma \\
& \leq|\operatorname{det} C| \int_{[-a, a]^{d}} \sum_{n \in \mathbb{Z}^{d}}|g(C(\xi-n))|^{2} d \xi
\end{aligned}
$$

Now, using that (modulo null-sets)

$$
[-a, a]^{d}=\bigcup_{k \in[-a, a-1]^{d} \cap \mathbb{Z}^{d}}\left(k+[0,1]^{d}\right)
$$

and that the function $\xi \mapsto \sum_{n \in \mathbb{Z}^{d}}|g(C(\xi-n))|^{2}$ is \mathbb{Z}^{d}-periodic,

$$
\begin{aligned}
& \int_{[-a, a]^{d}} \sum_{n \in \mathbb{Z}^{d}}|g(C(\xi-n))|^{2} d \xi \\
& =(2 a)^{d} \int_{[0,1]^{d}} \sum_{n \in \mathbb{Z}^{d}}|g(C(\xi-n))|^{2} d \xi \\
& =(2 a)^{d} \int_{\mathbb{R}^{d}}|g(C \xi)|^{2} d \xi \\
& =|\operatorname{det} C|^{-1}(2 a)^{d} \int_{\mathbb{R}^{d}}|g(\eta)|^{2} d \eta<\infty .
\end{aligned}
$$

The following is the frame-pair version of Corollary 3.3 in [7]. It can also be considered as the time-domain version of Lemma 1.1. Results of that type already appeared in [8] by Ron and Shen, and (in the one-dimensional case) in [5] by Janssen. We provide the short proof for the sake of completeness.

Lemma 2.2 Two Bessel sequences $\left\{E_{B m} T_{C n} g\right\}_{m, n \in \mathbb{Z}^{d}}$ and $\left\{E_{B m} T_{C n} h\right\}_{m, n \in \mathbb{Z}^{d}}$ form dual frames for $L^{2}\left(\mathbb{R}^{d}\right)$ if and only if

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}^{d}} \overline{g\left(x-B^{\sharp} n-C k\right)} h(x-C k)=|\operatorname{det} B| \delta_{n, 0} . \tag{4}
\end{equation*}
$$

Proof. We note that $\left\{E_{B m} T_{C n} g\right\}_{m, n \in \mathbb{Z}^{d}}$ and $\left\{E_{B m} T_{C n} h\right\}_{m, n \in \mathbb{Z}^{d}}$ form dual frames if and only if $\left\{\mathcal{F}^{-1} E_{B m} T_{C n} g\right\}_{m, n \in \mathbb{Z}^{d}}$ and $\left\{\mathcal{F}^{-1} E_{B m} T_{C n} h\right\}_{m, n \in \mathbb{Z}^{d}}$ are dual frames. Now, $\mathcal{F}^{-1} E_{B m} T_{C n} g=T_{-B m} \mathcal{F}^{-1} T_{C n} g$; thus, the result follows from Lemma 1.1 and Lemma 2.1 with $g_{n}=\mathcal{F}^{-1} T_{C n} g, h_{n}=\mathcal{F}^{-1} T_{C n} h$.

We now present the first version of our results. For simplicity we consider the case $C=I$. For any $d \times d$ matrix we define the norm $\|B\|$ by

$$
\|B\|=\sup _{\|x\|=1}\|B x\| .
$$

Theorem 2.3 Let $N \in \mathbb{N}$. Let $g \in L^{2}\left(\mathbb{R}^{d}\right)$ be a real-valued bounded function with supp $g \subseteq[0, N]^{d}$, for which

$$
\sum_{n \in \mathbb{Z}^{d}} g(x-n)=1 .
$$

Assume that the $d \times d$ matrix B is invertible and $\|B\| \leq \frac{1}{\sqrt{d}(2 N-1)}$. For $i=1, \ldots, d$, let F_{i} be the set of lattice points $\left\{k_{j}\right\}_{j=1}^{d} \in \mathbb{Z}^{d}$ for which the coordinates $k_{j}, j=1, \ldots, d$, satisfy the requirements

$$
\left\{\begin{array}{l}
\text { if } j=1, \ldots, i-1, \text { then }\left|k_{j}\right| \leq N-1 ; \tag{5}\\
\text { if } j=i, \quad \text { then } 1 \leq k_{j} \leq N-1 ; \\
\text { if } j=i+1, \ldots, d \text {, then } k_{j}=0 .
\end{array}\right.
$$

Define $h \in L^{2}\left(\mathbb{R}^{d}\right)$ by

$$
\begin{equation*}
h(x):=|\operatorname{det} B|\left[g(x)+2 \sum_{i=1}^{d} \sum_{k \in F_{i}} g(x+k)\right] . \tag{6}
\end{equation*}
$$

Then the function g and the function h generate dual frames $\left\{E_{B m} T_{n} g\right\}_{m, n \in \mathbb{Z}^{d}}$ and $\left\{E_{B m} T_{n} h\right\}_{m, n \in \mathbb{Z}^{d}}$ for $L^{2}\left(\mathbb{R}^{d}\right)$.

Proof. We apply Lemma 2.2. Since B is invertible, for any $n \in \mathbb{Z}^{d}$ we have

$$
|n|=\left\|B^{T} B^{\sharp} n\right\| \leq\|B\|\left\|B^{\sharp} n\right\| ;
$$

thus, for $n \neq 0,\left\|B^{\sharp} n\right\| \geq 1 /\|B\|$. Note that with the definition (6), we have $\operatorname{supp} h \subseteq[-N+1,2 N-1]^{d}$; thus (4) is satisfied for $n \neq 0$ if $1 /\|B\| \geq$ $\sqrt{d}(2 N-1)$, i.e., if

$$
\|B\| \leq \frac{1}{\sqrt{d}(2 N-1)}
$$

Thus, we only need to check that

$$
\sum_{k \in \mathbb{Z}^{d}} g(x-k) h(x-k)=|\operatorname{det} B|, x \in[0,1]^{d} ;
$$

due to the compact support of g, this is equivalent to

$$
\begin{equation*}
\sum_{n \in[0, N-1]^{d} \cap \mathbb{Z}^{d}} g(x+n) h(x+n)=|\operatorname{det} B|, x \in[0,1]^{d} . \tag{7}
\end{equation*}
$$

To check that (7) holds, we use that for $x \in[0,1]^{d}$,

$$
\begin{equation*}
\sum_{n \in[0, N-1]^{d} \cap \mathbb{Z}^{d}} g(x+n)=1 \tag{8}
\end{equation*}
$$

For $n:=\left\{n_{j}\right\}_{j=1}^{d} \in[0, N-1]^{d} \cap \mathbb{Z}^{d}$, and $i=1, \ldots, d$, let E_{i}^{n} denote the set of lattice points $\left\{k_{j}\right\}_{j=1}^{d} \in \mathbb{Z}^{d}$ whose coordinates k_{j} satisfy the requirements

$$
\left\{\begin{array}{l}
\text { if } j=1, \ldots, i-1, \text { then } 0 \leq k_{j} \leq N-1 ; \\
\text { if } j=i \text {, then } n_{j}+1 \leq k_{j} \leq N-1 ; \\
\text { if } j=i+1, \ldots, d, \text { then } k_{j}=n_{j} .
\end{array}\right.
$$

Define $\tilde{h}_{n} \in L^{2}\left(\mathbb{R}^{d}\right)$ by

$$
\tilde{h}_{n}(x):=|\operatorname{det} B|\left[g(x+n)+2 \sum_{i=1}^{d} \sum_{k \in E_{i}^{n}} g(x+k)\right] .
$$

We now consider the finite set $[0, N-1]^{d} \cap \mathbb{Z}^{d}$. Using lexicographic ordering, i.e.

$$
\begin{aligned}
& \left(i_{1}, \ldots, i_{d}\right)>\left(j_{1}, \ldots, j_{d}\right) \\
& \Leftrightarrow\left(i_{d}>j_{d}\right) \vee\left(\left(i_{d}=j_{d}\right) \wedge\left(i_{d-1}>j_{d-1}\right)\right) \vee \cdots \\
& \vee\left(\left(i_{d}=j_{d}\right) \wedge \cdots \wedge\left(i_{2}=j_{2}\right) \wedge i_{1}>j_{1}\right),
\end{aligned}
$$

we write

$$
[0, N-1]^{d} \cap \mathbb{Z}^{d}=\left\{n_{1}, n_{2}, \cdots, n_{N^{d}}\right\}
$$

with $n_{j}<n_{k}$ for $j<k$. Then for $x \in[0,1]^{d}$, (8) implies that

$$
\begin{aligned}
1= & \left(\sum_{j=1}^{N^{d}} g\left(x+n_{j}\right)\right)^{2} \\
= & \left(g\left(x+n_{1}\right)+g\left(x+n_{2}\right)+\cdots+g\left(x+n_{N^{d}}\right)\right) \times \\
= & \left(g\left(x+n_{1}\right)+g\left(x+n_{2}\right)+\cdots+g\left(x+n_{N^{d}}\right)\right)\left[g\left(x+n_{1}\right)+2 g\left(x+n_{2}\right)+2 g\left(x+n_{3}\right)+\cdots+2 g\left(x+n_{N^{d}}\right)\right] \\
& +g\left(x+n_{2}\right)\left[g\left(x+n_{2}\right)+2 g\left(x+n_{3}\right)+2 g\left(x+n_{4}\right)+\cdots+2 g\left(x+n_{N^{d}}\right)\right] \\
& +\cdots \\
& +\cdots \\
& +g\left(x+n_{N^{d}-1}\right)\left[g\left(x+n_{N^{d}-1}\right)+2 g\left(x+n_{N^{d}}\right)\right] \\
& +g\left(x+n_{N^{d}}\right)\left[g\left(x+n_{N^{d}}\right)\right] \\
= & \frac{1}{|\operatorname{det} B|} \sum_{j=1}^{N^{d}} g\left(x+n_{j}\right) \tilde{h}_{n_{j}}(x) .
\end{aligned}
$$

It remains to show that for $x \in[0,1]^{d}$ and $n=\left\{n_{j}\right\}_{j=1}^{d} \in[0, N-1]^{d} \cap \mathbb{Z}^{d}$,

$$
h(x+n)=\tilde{h}_{n}(x) .
$$

In order to do so, it is sufficient to show that for any $i=1, \ldots, d$,

$$
\begin{equation*}
\sum_{k \in F_{i}} g(x+n+k)=\sum_{k \in E_{i}^{n}} g(x+k), x \in[0,1]^{d} . \tag{9}
\end{equation*}
$$

Fix $i \in\{1, \ldots, d\}$. If $1 \leq j<i$, then

$$
\begin{align*}
\left\{n_{j}+k_{j}:\left\{k_{j}\right\}_{j=1}^{d} \in F_{i}\right\} & =\left[n_{j}-N+1, n_{j}+N-1\right] \cap \mathbb{Z} \tag{10}\\
& \supseteq[0, N-1] \cap \mathbb{Z}
\end{align*}
$$

If $j=i$, then

$$
\begin{align*}
\left\{n_{j}+k_{j}:\left\{k_{j}\right\}_{j=1}^{d} \in F_{i}\right\} & =\left[n_{j}+1, n_{j}+N-1\right] \cap \mathbb{Z} \tag{11}\\
& \supseteq\left[1+n_{j}, N-1\right] \cap \mathbb{Z}
\end{align*}
$$

If $j>i$, then

$$
\left\{n_{j}+k_{j}:\left\{k_{j}\right\}_{j=1}^{d} \in F_{i}\right\}=\left\{n_{j}\right\} .
$$

Via the definition of the set E_{i}^{n} this shows that

$$
\begin{equation*}
E_{i}^{n} \subseteq\left\{n+k: k=\left\{k_{j}\right\}_{j=1}^{d} \in F_{i}\right\} . \tag{12}
\end{equation*}
$$

In order to show that we have equality in (9), we again fix $i \in\{1, \ldots, d\}$. Suppose that $m:=\left\{m_{j}\right\}_{j=1}^{d} \in\left\{n+k: k=\left\{k_{j}\right\}_{j=1}^{d} \in F_{i}\right\} \backslash E_{i}^{n}$. Then either, by (10), there exists $j \in\{1, \ldots, i-1\}$ such that

$$
m_{j}:=n_{j}+k_{j} \notin[0, N-1] \cap \mathbb{Z}
$$

or, by (11),

$$
m_{i}:=n_{i}+k_{i} \in\left(\left[1+n_{j}, n_{j}+N-1\right] \backslash\left[1+n_{j}, N-1\right]\right) \cap \mathbb{Z}=\left[N, n_{j}+N-1\right] \cap \mathbb{Z} .
$$

In both cases, since $\operatorname{supp} g \subseteq[0, N]^{d}$, this implies that $g(x+m)=0$ for $x \in[0,1]^{d}$. Hence,

$$
\sum_{k \in F_{i}} g(x+n+k)=\sum_{k \in E_{i}^{n}} g(x+k),
$$

as desired.

Figure 1: The sets F_{1} (marked by \square) and F_{2} (marked by \bigcirc) corresponding to $N=3$ and $d=2$.

Example 2.4 For $d=1$, the Gabor system considered in Theorem 2.3 is $\left\{E_{m b} T_{n} g\right\}_{m, n \in \mathbb{Z}}$ for some $b>0$. The reader can check that

$$
F_{1}=\{1, \ldots, N-1\}
$$

thus, the expression for the dual generator h in (6) is

$$
h(x)=b g(x)+2 b \sum_{k=1}^{N-1} g(x+k) .
$$

This result corresponds to the one-dimensional case treated in [2].
For $d=2$, (5) leads to the sets

$$
\begin{aligned}
& F_{1}=\left\{\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2} \mid 1 \leq k_{1} \leq N-1, k_{2}=0\right\} \\
& F_{2}=\left\{\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}| | k_{1} \mid \leq N-1,1 \leq k_{2} \leq N-1\right\} .
\end{aligned}
$$

For $N=3$, the sets F_{1} and F_{2} are marked on Figure 1.
Via a change of variable Theorem 2.3 leads to a construction of frames of the type $\left\{E_{B m} T_{C n} g\right\}_{m, n \in \mathbb{Z}^{d}}$ and convenient duals:

Theorem 2.5 Let $N \in \mathbb{N}$. Let $g \in L^{2}\left(\mathbb{R}^{d}\right)$ be a real-valued bounded function with supp $g \subseteq[0, N]^{d}$, for which

$$
\sum_{n \in \mathbb{Z}^{d}} g(x-n)=1 .
$$

Let B and C be invertible $d \times d$ matrices such that $\left\|C^{T} B\right\| \leq \frac{1}{\sqrt{d}(2 N-1)}$, and let (with the sets F_{i} defined as in Theorem 2.3)

$$
\begin{equation*}
h(x)=\left|\operatorname{det}\left(C^{T} B\right)\right|\left[g(x)+2 \sum_{i=1}^{d} \sum_{k \in F_{i}} g(x+k)\right] . \tag{13}
\end{equation*}
$$

Then the function $D_{C^{-1}} g$ and the function $D_{C^{-1}} h$ generate dual Gabor frames $\left\{E_{B m} T_{C n} D_{C^{-1}} g\right\}_{m, n \in \mathbb{Z}^{d}}$ and $\left\{E_{B m} T_{C n} D_{C^{-1}} h\right\}_{m, n \in \mathbb{Z}^{d}}$ for $L^{2}\left(\mathbb{R}^{d}\right)$.
Proof. By assumptions and Theorem 2.3, the Gabor systems $\left\{E_{C^{T} B m} T_{n} g\right\}_{m, n \in \mathbb{Z}^{d}}$ and $\left\{E_{C^{T} B m} T_{n} h\right\}_{m, n \in \mathbb{Z}^{d}}$ form dual frames; since

$$
D_{C^{-1}} E_{C^{T} B m} T_{n}=E_{B m} T_{C n} D_{C^{-1}}
$$

the result follows from $D_{C^{-1}}$ being unitary.
For functions g of the above type and arbitrary real invertible $d \times d$ matrices B and C, Theorem 2.5 leads to a construction of a (finitely generated) multi-Gabor frame $\left\{E_{B m} T_{C n} g_{k}\right\}_{m, n \in \mathbb{Z}^{d}, k \in \mathcal{F}}$, where all the generators g_{k} are dilated and translated versions of g. Again, the dual generators have a similar form, and are given explicitly:

Theorem 2.6 Let $N \in \mathbb{N}$. Let $g \in L^{2}\left(\mathbb{R}^{d}\right)$ be a real-valued bounded function with supp $g \subseteq[0, N]^{d}$, for which

$$
\sum_{n \in \mathbb{Z}^{d}} g(x-n)=1 .
$$

Let B and C be invertible $d \times d$ matrices and choose $J \in \mathbb{N}$ such that
$J \geq\left\|C^{T} B\right\| \sqrt{d}(2 N-1)$. Define the function h by (13). Then the functions

$$
g_{k}=T_{\frac{1}{J} C k} D_{J C^{-1}} g, \quad h_{k}=T_{\frac{1}{J} C k} D_{J C^{-1}} h, \quad k \in \mathbb{Z}^{d} \cap[0, J-1]^{d}
$$

generate dual multi-Gabor frames $\left\{E_{B m} T_{C n} g_{k}\right\}_{m, n \in \mathbb{Z}^{d}, k \in \mathbb{Z}^{d} \cap[0, J-1]^{d}}$ and $\left\{E_{B m} T_{C n} h_{k}\right\}_{m, n \in \mathbb{Z}^{d}, k \in \mathbb{Z}^{d} \cap[0, J-1]^{d}}$ for $L^{2}\left(\mathbb{R}^{d}\right)$.

Proof. The choice of J implies that the matrices B and $\frac{1}{J} C$ satisfy the conditions in Theorem 2.5; thus
$\left\{e^{2 \pi i B m \cdot x}\left(D_{J C^{-1}} g\right)\left(x-\frac{1}{J} C n\right)\right\}_{m, n \in \mathbb{Z}^{d}}$ and $\left\{e^{2 \pi i B m \cdot x}\left(D_{J C^{-1}} h\right)\left(x-\frac{1}{J} C n\right)\right\}_{m, n \in \mathbb{Z}^{d}}$ form a pair of dual Gabor frames for $L^{2}\left(\mathbb{R}^{d}\right)$. Now,

$$
\left\{\frac{1}{J} C n\right\}_{n \in \mathbb{Z}^{d}}=\bigcup_{k \in \mathbb{Z}^{d} \cap[0, J-1]^{d}}\left\{\frac{1}{J} C k+C n\right\}_{n \in \mathbb{Z}^{d}}
$$

Thus

$$
\begin{aligned}
\left\{\left(D_{J C^{-1}} g\right)\left(\cdot-\frac{1}{J} C n\right)\right\}_{n \in \mathbb{Z}^{d}} & =\bigcup_{k \in \mathbb{Z}^{d} \cap[0, J-1]^{d}}\left\{\left(D_{J C^{-1}} g\right)\left(\cdot-\frac{1}{J} C k-C n\right)\right\}_{n \in \mathbb{Z}^{d}} \\
& =\bigcup_{k \in \mathbb{Z}^{d} \cap[0, J-1]^{d}}\left\{T_{C n} T_{\frac{1}{J} C k} D_{J C^{-1}} g(\cdot)\right\}_{n \in \mathbb{Z}^{d}}
\end{aligned}
$$

Inserting this into the expression for the pair of dual frames leads to the result.

Note that multi-generated Gabor system have appeared in various applications for a long time, see, e.g., [10].

Via our results we now construct Gabor frames for $L^{2}\left(\mathbb{R}^{d}\right)$ with box spline generators and dual generators having a similar form.

Example 2.7 Let B_{2} be the one-dimensional B-spline of order 2 defined by

$$
B_{2}(x)= \begin{cases}x, & x \in[0,1[\\ 2-x, & x \in[1,2[\\ 0, & x \notin[0,2[\end{cases}
$$

Define $g \in L^{2}\left(\mathbb{R}^{2}\right)$ by

$$
\begin{equation*}
g(x, y)=B_{2}(x) B_{2}(y) \tag{14}
\end{equation*}
$$

then $\operatorname{supp} g \subseteq[0,2]^{2}$, and

$$
\sum_{n \in \mathbb{Z}^{2}} g(x-n)=1, x \in \mathbb{R}^{2}
$$

Figure 2: Plots of the generators in Example 2.7: (a) $g_{(0,0)}$; (b) $g_{(1,0)}$; (c) $g_{(0,1)} ;(\mathrm{d}) g_{(1,1)} ;$ (e) $h_{(0,0)} ;(\mathrm{f}) h_{(1,0)} ;(\mathrm{g}) h_{(0,1)} ;(\mathrm{h}) h_{(1,1)}$.
since the integer-translates of B_{2} form a partition of unity. Let the 2×2 matrices B and C be defined by

$$
B=\frac{1}{10}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), C=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) .
$$

A direct calculation shows that

$$
\begin{aligned}
\left\|C^{T} B\right\|^{2} & =\left\|\frac{1}{10}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\right\|^{2}=\sup _{\theta}\left\|\frac{1}{10}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\binom{\cos \theta}{\sin \theta}\right\|^{2} \\
& =\left(\frac{1}{10}\right)^{2}(\sqrt{2}+1)^{2}
\end{aligned}
$$

Thus

$$
\left\|C^{T} B\right\| \sqrt{d}(2 N-1)=\frac{3}{10}(2+\sqrt{2})=1.02 \cdots
$$

Thus we can apply Theorem 2.6 with $J=2$. Define the function $h \in L^{2}\left(\mathbb{R}^{2}\right)$ by (13), i.e.,

$$
\begin{align*}
h(x, y)= & \left|\operatorname{det}\left(C^{T} B\right)\right|[g(x, y)+2 g((x, y)+(1,0)) \\
& +2 g((x, y)+(-1,1))+2 g((x, y)+(0,1))+2 g((x, y)+(1,1))] \\
& =\frac{1}{2 x y+2 x+2 y+2,} \begin{array}{ll}
2 x+2, & (x, y) \in[-1,0[\times[-1,0[; \\
4 x-2 x y+4-2 y, & (x, y) \in[-1,0[\times[0,1[; \\
2 y+2, & (x, y) \in[0,1,0[\times[1,2[; \\
-x y+2, & (x, y) \in[0,1[\times[0,1] ; \\
-2 x+x y+4-2 y, & (x, y) \in[0,1[\times[1,2[; \\
2 y+2, & (x, y) \in[1,2[\times[-1,0[; \\
-x y+2, & (x, y) \in[1,2[\times[0,1[; \\
-2 x+x y+4-2 y, & (x, y) \in[1,2[\times[1,2[; \\
6 y+6-2 x y-2 x, & (x, y) \in[2,3[\times[-1,0[; \\
6-6 y-2 x+2 x y, & (x, y) \in[2,3[\times[0,1[; \\
0, & \text { otherwise. } .
\end{array} \tag{15}
\end{align*}
$$

By Theorem 2.6, the four functions

$$
\begin{equation*}
g_{k}=T_{\frac{1}{2} C k} D_{2 C^{-1}} g, k \in \mathbb{Z}^{2} \cap[0,1]^{2} \tag{16}
\end{equation*}
$$

generate a multi-Gabor frame $\left\{E_{B m} T_{C n} g_{k}\right\}_{m, n \in \mathbb{Z}^{2}, k \in \mathbb{Z}^{2} \cap[0,1]^{2}}$, with a dual frame $\left\{E_{B m} T_{C n} h_{k}\right\}_{m, n \in \mathbb{Z}^{2}, k \in \mathbb{Z}^{2} \cap[0,1]^{2}}$, where

$$
\begin{equation*}
h_{k}=T_{\frac{1}{2} C k} D_{2 C^{-1}} h, k \in \mathbb{Z}^{2} \cap[0,1]^{2} . \tag{17}
\end{equation*}
$$

Example 2.8 Similar calculations can be performed for any tensor product of B-splines. On Figure 3 we plot the box spline $g(x, y)=B_{3}(x) B_{3}(y)$ and the function h in (13) for the choice

$$
B=\frac{1}{10}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), C=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) .
$$

Acknowledgment: The authors thank Joachim Stöckler for proposing to use lexicographic ordering, and the referees for many suggestions, leading to improvements of the presentation.

References

[1] Christensen, O.: An introduction to frames and Riesz bases. Birkhäuser 2003.
[2] Christensen, O.: Pairs of dual Gabor frames with compact support and desired frequency localization. To apper in Appl. Comp. Harm. Anal, 2006.
[3] Gröchenig, K.: Foundations of time-frequency analysis. Birkhäuser, Boston, 2000.
[4] Hernandez, E., Labate, D., and Weiss, G.: A unified characterization of reproducing systems generated by a finite family II. J. Geom. Anal. 12 no. 4 (2002), 615-662.
[5] Janssen, A.J.E.M.: The duality condition for Weyl-Heisenberg frames. In "Gabor analysis: theory and application", (eds. Feichtinger, H. G. and Strohmer, T.). Birkhäuser, Boston, 1998.
[6] Janssen, A.J.E.M.: Representations of Gabor frame operators. In "Twentieth century harmonic analysis-a celebration", 73-101, NATO Sci. Ser. II Math. Phys. Chem., 33, Kluwer Acad. Publ., Dordrecht, 2001.
[7] Labate, D.: A unified characterization of reproducing systems generated by a finite family I. J. Geom. Anal. 12 no. 3 (2002), 469-491.
[8] Ron, A. and Shen, Z.: Weyl-Heisenberg systems and Riesz bases in $L^{2}\left(\mathbb{R}^{d}\right)$. Duke Math. J. 89 (1997), 237-282.

(b)

Figure 3: The functions g (Figure (a)) and h (Figure (b)) in Example 2.8.
[9] Ron, A. and Shen, Z.: Generalized shift-invariant systems. Const. Appr. 22 no. 1 (2005), 1-45
[10] Zibulski, M. and Zeevi, Y. Y., and Porat, M.:: Multi-window Gabor schemes in signal and image representations. In "Gabor analysis: theory and application", (eds. Feichtinger, H. G. and Strohmer, T.). Birkhäuser, Boston, 1998.

Ole Christensen
Department of Mathematics
Technical University of Denmark
Building 303
2800 Lyngby
Denmark
Email: Ole.Christensen@mat.dtu.dk
Rae Young Kim
Department of Mathematics
Yeungnam University
214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 Republic of Korea
Email: rykim@ynu.ac.kr

[^0]: *The second author thanks the Department of Mathematics at the Technical University of Denmark for hospitality and support during a visit in 2005 . The second author was also supported by Korea Research Foundation Grant (KRF-2002-070-C00004).
 AMS Math. Subject classification: 42C15, 42C40.
 Keywords: Gabor frames, dual frame, dual generator

