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Abstract

Given certain compactly supported functions g ∈ L2(Rd) whose
Zd-translates form a partition of unity, and real invertible d×d matri-
ces B, C for which ||CT B|| is sufficiently small, we prove that the Ga-
bor system {EBmTCng}m,n∈Zd forms a frame, with a (non-canonical)
dual Gabor frame generated by an explicitly given finite linear combi-
nation of shifts of g. For functions g of the above type and arbitrary
real invertible d × d matrices B,C this result leads to a construction
of a multi–Gabor frame {EBmTCngk}m,n∈Zd,k∈F , where all the gen-
erators gk are dilated and translated versions of g. Again, the dual
generators have a similar form, and are given explicitly. Our concrete
examples concern box splines.

1 Introduction

For y ∈ Rd, the translation operator Ty and the modulation operator Ey are
defined by

(Tyf)(x) = f(x− y), x ∈ Rd,

(Eyf)(x) = e2πiy·xf(x), x ∈ Rd,
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where y · x denotes the inner product between y and x in Rd. Given two
real and invertible d×d matrices B and C we consider Gabor systems of the
form

{EBmTCng}m,n∈Zd = {e2πiBm·xg(x− Cn)}m,n∈Zd .

Our purpose is to construct a class of Gabor frames with generators that are
easy to use in practice, and having the additional property that we can find
a dual generator of the form

h =
∑

k∈F
ckTkg

for some finite set F ⊂ Zd and explicitly given scalar coefficients ck. One
advantage of this is that the decay of the dual generator h in the frequency do-
main is controlled by the decay of ĝ. Our results extend the one-dimensional
results in [2]. As we will see, the extension is non-trivial: it is not clear
from the one-dimensional version how one has to define the dual generators
in higher dimensions.

Our approach is strongly connected with the results by Janssen [5], [6],
Labate [7], Hernandez, Labate and Weiss [4], and Ron and Shen [8],[9].
However, in contrast to these papers, the focus is on explicit constructions
rather than general characterizations. For more information about Gabor
systems and their role in time-frequency analysis we refer to the book [3] by
Gröchenig; for general frame theory we refer to [1].

In the rest of the introduction we collect a few conventions about notation
and a basic result for obtaining a pair of dual frames. The dilation operator
associated with a real d× d matrix C is

(DCf)(x) = | det C|1/2f(Cx), x ∈ Rd.

Let CT denote the transpose of a matrix C; then

DCEy = ECT yDC , DCTy = TC−1yDC .

If C is invertible, we use the notation

C] = (CT )−1.

For f ∈ (L1 ∩ L2) (Rd) we denote the Fourier transform by

Ff(γ) = f̂(γ) =

∫

Rd

f(x)e−2πix·γdx.

2



As usual, the Fourier transform is extended to a unitary operator on L2(Rd).
The reader can check that

FTCk = E−CkF .

We conclude the introduction by stating a special case of a result from
[4]; it will form the basis for all the results presented in the paper. Let

D := {f ∈ L2(Rd) : f̂ ∈ L∞(Rd) and suppf̂ is compact}.

Lemma 1.1 Let B be an invertible d × d matrix, and let {gn}n∈Zd and
{hn}n∈Zd be collections of functions in L2(Rd). Assume that {TBmgn}m,n∈Zd

and {TBmhn}m,n∈Zd are Bessel sequences and that for all f ∈ D,

∑

n∈Zd

∑

m∈Zd

∫

suppf̂

|f̂(γ + B]m)|2|ĝn(γ)|2dγ < ∞, (1)

∑

n∈Zd

∑

m∈Zd

∫

suppf̂

|f̂(γ + B]m)|2|ĥn(γ)|2dγ < ∞. (2)

Then {TBmgn}m,n∈Zd and {TBmhn}m,n∈Zd are dual frames for L2(Rd) if and
only if

∑

k∈Zd

ĝk(γ −B]n)ĥk(γ) = | det B|δn,0, a.e.γ,

for all n ∈ Zd.

2 Dual pairs of Gabor frames

We first prove a time-domain version of Lemma 1.1 for Gabor systems. As
we will see, we can remove the technical conditions (1) and (2) in the Gabor
case. We begin with a Lemma.

Lemma 2.1 Let g ∈ L2(Rd) and assume that B and C are invertible matri-
ces. Then for all f ∈ D,

∑

n∈Zd

∑

m∈Zd

∫

suppf̂

|f̂(γ + B]m)|2|g(γ − Cn)|2dγ < ∞.
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Proof. Let f ∈ D. Then

∑

m∈Zd

|f̂(γ + B]m)|2 ≤ sup
γ∈B][0,1]d

∑

m∈Zd

|f̂(γ + B]m)|2. (3)

Independently of the choice of γ ∈ B][0, 1]d, only a fixed finite number of
m ∈ Zd will give non-zero contributions to the sum on the right-hand side of
(3); since f̂ is bounded, this implies that there exists a constant K such that

∑

m∈Zd

|f̂(γ + B]m)|2 ≤ K, a.e γ.

Hence,

∑

n∈Zd

∑

m∈Zd

∫

suppf̂

|f̂(γ + B]m)|2|g(γ − Cn)|2dγ

=

∫

suppf̂

∑

m∈Zd

|f̂(γ + B]m)|2
∑

n∈Zd

|g(γ − Cn)|2dγ

≤ K

∫

suppf̂

∑

n∈Zd

|g(γ − Cn)|2dγ.

Choose an integer a > 0 such that

suppf̂ ⊆ C[−a, a]d.

Then
∫

suppf̂

∑

n∈Zd

|g(γ − Cn)|2dγ ≤
∫

C[−a,a]d

∑

n∈Zd

|g(γ − Cn)|2dγ

≤ | det C|
∫

[−a,a]d

∑

n∈Zd

|g(C(ξ − n))|2dξ.

Now, using that (modulo null-sets)

[−a, a]d =
⋃

k∈[−a,a−1]d∩Zd

(k + [0, 1]d)
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and that the function ξ 7→ ∑
n∈Zd |g(C(ξ − n))|2 is Zd-periodic,

∫

[−a,a]d

∑

n∈Zd

|g(C(ξ − n))|2dξ

= (2a)d

∫

[0,1]d

∑

n∈Zd

|g(C(ξ − n))|2dξ

= (2a)d

∫

Rd

|g(Cξ)|2dξ

= | det C|−1(2a)d

∫

Rd

|g(η)|2dη < ∞.

¤

The following is the frame-pair version of Corollary 3.3 in [7]. It can also
be considered as the time-domain version of Lemma 1.1. Results of that type
already appeared in [8] by Ron and Shen, and (in the one-dimensional case)
in [5] by Janssen. We provide the short proof for the sake of completeness.

Lemma 2.2 Two Bessel sequences {EBmTCng}m,n∈Zd and {EBmTCnh}m,n∈Zd

form dual frames for L2(Rd) if and only if

∑

k∈Zd

g(x−B]n− Ck)h(x− Ck) = | det B|δn,0. (4)

Proof. We note that {EBmTCng}m,n∈Zd and {EBmTCnh}m,n∈Zd form dual
frames if and only if {F−1EBmTCng}m,n∈Zd and {F−1EBmTCnh}m,n∈Zd are
dual frames. Now, F−1EBmTCng = T−BmF−1TCng; thus, the result follows
from Lemma 1.1 and Lemma 2.1 with gn = F−1TCng, hn = F−1TCnh. ¤

We now present the first version of our results. For simplicity we consider
the case C = I. For any d× d matrix we define the norm ||B|| by

||B|| = sup
||x||=1

||Bx||.

Theorem 2.3 Let N ∈ N. Let g ∈ L2(Rd) be a real-valued bounded function
with supp g ⊆ [0, N ]d, for which

∑

n∈Zd

g(x− n) = 1.
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Assume that the d × d matrix B is invertible and ||B|| ≤ 1√
d(2N−1)

. For

i = 1, . . . , d, let Fi be the set of lattice points {kj}d
j=1 ∈ Zd for which the

coordinates kj, j = 1, . . . , d, satisfy the requirements





if j = 1, . . . , i− 1, then |kj| ≤ N − 1;

if j = i, then 1 ≤ kj ≤ N − 1;

if j = i + 1, . . . , d, then kj = 0.

(5)

Define h ∈ L2(Rd) by

h(x) := | det B|
[
g(x) + 2

d∑
i=1

∑

k∈Fi

g(x + k)

]
. (6)

Then the function g and the function h generate dual frames {EBmTng}m,n∈Zd

and {EBmTnh}m,n∈Zd for L2(Rd).

Proof. We apply Lemma 2.2. Since B is invertible, for any n ∈ Zd we have

|n| = ||BT B]n|| ≤ ||B|| ||B]n||;
thus, for n 6= 0, ||B]n|| ≥ 1/||B||. Note that with the definition (6), we have
supp h ⊆ [−N + 1, 2N − 1]d; thus (4) is satisfied for n 6= 0 if 1/||B|| ≥√

d(2N − 1), i.e., if

||B|| ≤ 1√
d(2N − 1)

.

Thus, we only need to check that
∑

k∈Zd

g(x− k)h(x− k) = | det B|, x ∈ [0, 1]d;

due to the compact support of g, this is equivalent to
∑

n∈[0,N−1]d∩Zd

g(x + n)h(x + n) = | det B|, x ∈ [0, 1]d. (7)

To check that (7) holds, we use that for x ∈ [0, 1]d,

∑

n∈[0,N−1]d∩Zd

g(x + n) = 1. (8)
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For n := {nj}d
j=1 ∈ [0, N − 1]d ∩ Zd, and i = 1, . . . , d, let En

i denote the set
of lattice points {kj}d

j=1 ∈ Zd whose coordinates kj satisfy the requirements




if j = 1, . . . , i− 1, then 0 ≤ kj ≤ N − 1;

if j = i, then nj + 1 ≤ kj ≤ N − 1;

if j = i + 1, . . . , d, then kj = nj.

Define h̃n ∈ L2(Rd) by

h̃n(x) := | det B|

g(x + n) + 2

d∑
i=1

∑

k∈En
i

g(x + k)


 .

We now consider the finite set [0, N − 1]d∩Zd. Using lexicographic ordering,
i.e.

(i1, . . . , id) > (j1, . . . , jd)

⇔ (id > jd) ∨ ((id = jd) ∧ (id−1 > jd−1)) ∨ · · ·
∨((id = jd) ∧ · · · ∧ (i2 = j2) ∧ i1 > j1),

we write
[0, N − 1]d ∩ Zd = {n1, n2, · · · , nNd},

with nj < nk for j < k. Then for x ∈ [0, 1]d, (8) implies that

1 =




Nd∑
j=1

g(x + nj)




2

= (g(x + n1) + g(x + n2) + · · ·+ g(x + nNd))×
(g(x + n1) + g(x + n2) + · · ·+ g(x + nNd))

= g(x + n1)[g(x + n1) + 2g(x + n2) + 2g(x + n3) + · · ·+ 2g(x + nNd)]

+g(x + n2)[g(x + n2) + 2g(x + n3) + 2g(x + n4) + · · ·+ 2g(x + nNd)]

+ · · ·
+ · · ·
+g(x + nNd−1)[g(x + nNd−1) + 2g(x + nNd)]

+g(x + nNd)[g(x + nNd)]

=
1

| det B|
Nd∑
j=1

g(x + nj)h̃nj
(x).
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It remains to show that for x ∈ [0, 1]d and n = {nj}d
j=1 ∈ [0, N − 1]d∩Zd,

h(x + n) = h̃n(x).

In order to do so, it is sufficient to show that for any i = 1, . . . , d,
∑

k∈Fi

g(x + n + k) =
∑

k∈En
i

g(x + k), x ∈ [0, 1]d. (9)

Fix i ∈ {1, . . . , d}. If 1 ≤ j < i, then

{nj + kj : {kj}d
j=1 ∈ Fi} = [nj −N + 1, nj + N − 1] ∩ Z (10)

⊇ [0, N − 1] ∩ Z.

If j = i, then

{nj + kj : {kj}d
j=1 ∈ Fi} = [nj + 1, nj + N − 1] ∩ Z (11)

⊇ [1 + nj, N − 1] ∩ Z.

If j > i, then
{nj + kj : {kj}d

j=1 ∈ Fi} = {nj}.
Via the definition of the set En

i this shows that

En
i ⊆ {n + k : k = {kj}d

j=1 ∈ Fi}. (12)

In order to show that we have equality in (9), we again fix i ∈ {1, . . . , d}.
Suppose that m := {mj}d

j=1 ∈ {n + k : k = {kj}d
j=1 ∈ Fi} \ En

i . Then either,
by (10), there exists j ∈ {1, . . . , i− 1} such that

mj := nj + kj /∈ [0, N − 1] ∩ Z;

or, by (11),

mi := ni+ki ∈ ([1 + nj, nj + N − 1] \ [1 + nj, N − 1])∩Z = [N, nj+N−1]∩Z.

In both cases, since suppg ⊆ [0, N ]d, this implies that g(x + m) = 0 for
x ∈ [0, 1]d. Hence,

∑

k∈Fi

g(x + n + k) =
∑

k∈En
i

g(x + k),

as desired. ¤
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Figure 1: The sets F1 (marked by ¤) and F2 (marked by ©) corresponding
to N = 3 and d = 2.

Example 2.4 For d = 1, the Gabor system considered in Theorem 2.3 is
{EmbTng}m,n∈Z for some b > 0. The reader can check that

F1 = {1, . . . , N − 1};

thus, the expression for the dual generator h in (6) is

h(x) = bg(x) + 2b
N−1∑

k=1

g(x + k).

This result corresponds to the one-dimensional case treated in [2].
For d = 2, (5) leads to the sets

F1 = {(k1, k2) ∈ Z2| 1 ≤ k1 ≤ N − 1, k2 = 0},
F2 = {(k1, k2) ∈ Z2| |k1| ≤ N − 1, 1 ≤ k2 ≤ N − 1}.

For N = 3, the sets F1 and F2 are marked on Figure 1.

Via a change of variable Theorem 2.3 leads to a construction of frames of
the type {EBmTCng}m,n∈Zd and convenient duals:
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Theorem 2.5 Let N ∈ N. Let g ∈ L2(Rd) be a real-valued bounded function
with supp g ⊆ [0, N ]d, for which

∑

n∈Zd

g(x− n) = 1.

Let B and C be invertible d× d matrices such that ||CT B|| ≤ 1√
d(2N−1)

, and

let (with the sets Fi defined as in Theorem 2.3)

h(x) = | det(CT B)|
[
g(x) + 2

d∑
i=1

∑

k∈Fi

g(x + k)

]
. (13)

Then the function DC−1g and the function DC−1h generate dual Gabor frames
{EBmTCnDC−1g}m,n∈Zd and {EBmTCnDC−1h}m,n∈Zd for L2(Rd).

Proof. By assumptions and Theorem 2.3, the Gabor systems {ECT BmTng}m,n∈Zd

and {ECT BmTnh}m,n∈Zd form dual frames; since

DC−1ECT BmTn = EBmTCnDC−1 ,

the result follows from DC−1 being unitary. ¤

For functions g of the above type and arbitrary real invertible d× d ma-
trices B and C, Theorem 2.5 leads to a construction of a (finitely generated)
multi–Gabor frame {EBmTCngk}m,n∈Zd,k∈F , where all the generators gk are
dilated and translated versions of g. Again, the dual generators have a similar
form, and are given explicitly:

Theorem 2.6 Let N ∈ N. Let g ∈ L2(Rd) be a real-valued bounded function
with supp g ⊆ [0, N ]d, for which

∑

n∈Zd

g(x− n) = 1.

Let B and C be invertible d× d matrices and choose J ∈ N such that
J ≥ ||CT B||

√
d(2N − 1). Define the function h by (13). Then the functions

gk = T 1
J

CkDJC−1g, hk = T 1
J

CkDJC−1h, k ∈ Zd ∩ [0, J − 1]d

generate dual multi-Gabor frames {EBmTCngk}m,n∈Zd,k∈Zd∩[0,J−1]d and
{EBmTCnhk}m,n∈Zd,k∈Zd∩[0,J−1]d for L2(Rd).
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Proof. The choice of J implies that the matrices B and 1
J
C satisfy the

conditions in Theorem 2.5; thus

{e2πiBm·x(DJC−1g)(x− 1

J
Cn)}m,n∈Zd and {e2πiBm·x(DJC−1h)(x− 1

J
Cn)}m,n∈Zd

form a pair of dual Gabor frames for L2(Rd). Now,

{
1

J
Cn

}

n∈Zd

=
⋃

k∈Zd∩[0,J−1]d

{
1

J
Ck + Cn

}

n∈Zd

.

Thus
{

(DJC−1g)(· − 1

J
Cn)

}

n∈Zd

=
⋃

k∈Zd∩[0,J−1]d

{
(DJC−1g)(· − 1

J
Ck − Cn)

}

n∈Zd

=
⋃

k∈Zd∩[0,J−1]d

{
TCnT 1

J
CkDJC−1g(·)

}
n∈Zd

.

Inserting this into the expression for the pair of dual frames leads to the
result. ¤

Note that multi-generated Gabor system have appeared in various appli-
cations for a long time, see, e.g., [10].

Via our results we now construct Gabor frames for L2(Rd) with box spline
generators and dual generators having a similar form.

Example 2.7 Let B2 be the one-dimensional B-spline of order 2 defined by

B2(x) =





x, x ∈ [0, 1[;
2− x, x ∈ [1, 2[;
0, x /∈ [0, 2[.

Define g ∈ L2(R2) by
g(x, y) = B2(x) B2(y); (14)

then suppg ⊆ [0, 2]2, and

∑

n∈Z2

g(x− n) = 1, x ∈ R2,
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Figure 2: Plots of the generators in Example 2.7: (a) g(0,0); (b) g(1,0); (c)
g(0,1); (d) g(1,1); (e) h(0,0); (f) h(1,0); (g) h(0,1); (h) h(1,1).
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since the integer-translates of B2 form a partition of unity. Let the 2 × 2
matrices B and C be defined by

B =
1

10

(
1 1
0 1

)
, C =

(
1 0
1 1

)
.

A direct calculation shows that

||CT B||2 =

∣∣∣∣
∣∣∣∣

1

10

(
1 2
0 1

)∣∣∣∣
∣∣∣∣
2

= sup
θ

∣∣∣∣
∣∣∣∣

1

10

(
1 2
0 1

)(
cos θ
sin θ

)∣∣∣∣
∣∣∣∣
2

=

(
1

10

)2

(
√

2 + 1)2.

Thus

||CT B||
√

d(2N − 1) =
3

10
(2 +

√
2) = 1.02 · · · .

Thus we can apply Theorem 2.6 with J = 2. Define the function h ∈ L2(R2)
by (13), i.e.,

h(x, y) = | det(CT B)|[g(x, y) + 2g((x, y) + (1, 0))

+ 2g((x, y) + (−1, 1)) + 2g((x, y) + (0, 1)) + 2g((x, y) + (1, 1))]

=
1

10





2xy + 2x + 2y + 2, (x, y) ∈ [−1, 0[×[−1, 0[;
2x + 2, (x, y) ∈ [−1, 0[×[0, 1[;
4x− 2xy + 4− 2y, (x, y) ∈ [−1, 0[×[1, 2[;
2y + 2, (x, y) ∈ [0, 1[×[−1, 0[;
−xy + 2, (x, y) ∈ [0, 1[×[0, 1[;
−2x + xy + 4− 2y, (x, y) ∈ [0, 1[×[1, 2[;
2y + 2, (x, y) ∈ [1, 2[×[−1, 0[;
−xy + 2, (x, y) ∈ [1, 2[×[0, 1[;
−2x + xy + 4− 2y, (x, y) ∈ [1, 2[×[1, 2[;
6y + 6− 2xy − 2x, (x, y) ∈ [2, 3[×[−1, 0[;
6− 6y − 2x + 2xy, (x, y) ∈ [2, 3[×[0, 1[;
0, otherwise.

(15)

By Theorem 2.6, the four functions

gk = T 1
2
CkD2C−1g, k ∈ Z2 ∩ [0, 1]2 (16)

generate a multi-Gabor frame {EBmTCngk}m,n∈Z2,k∈Z2∩[0,1]2 , with a dual frame
{EBmTCnhk}m,n∈Z2,k∈Z2∩[0,1]2 , where

hk = T 1
2
CkD2C−1h, k ∈ Z2 ∩ [0, 1]2. (17)

13



Example 2.8 Similar calculations can be performed for any tensor product
of B-splines. On Figure 3 we plot the box spline g(x, y) = B3(x)B3(y) and
the function h in (13) for the choice

B =
1

10

(
1 1
0 1

)
, C =

(
1 0
1 1

)
.
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