
Design of an LDPC Code with Low Error Floor
∗Sang Hyun Lee,†Kwang Soon Kim,∗Jae Kyun Kwon,‡Yun Hee Kim, and∗Jae Young Ahn

∗ Telecomm. Research Lab.,
Electronics and Telecommunications
Research Institute, Daejeon, Korea

E-mail: {sh-lee, jack, jyahn}@etri.re.kr

† Department of Electrical
and Electronic Engineering,

Yonsei University, Seoul, Korea
E-mail: ks.kim@yonsei.ac.kr

‡ School of Electronics
and Information,

Kyung Hee University, Korea
E-mail: yheekim@khu.ac.kr

Abstract— A search algorithm for stopping sets in a Tanner
graph is proposed for designing good low-density parity-check
(LDPC) codes. By applying the belief-propagation algorithm with
messages containing the information of originated variable nodes
and their connected edges, the stopping sets can be detected.
Furthermore, a code design method using the algorithm is
presented and the performances of the designed code over several
channels are shown.

I. I NTRODUCTION

An LDPC code has attracted much consideration due to its
performance very close to the Shannon capacity limit under the
assumption of asymptotically long codeword length. However,
it has been reported that a moderate-length code suffers from
an error floor in a high SNR region [1]. Also, it has been shown
that, under message-passing decoding, small stopping sets in
the graph dominantly give rise to high error floors [2]. Al-
though a conditioning method for implicit alleviation of error
floors has been proposed to make degrees of nodes associated
with small cycles high [3], the method does not guarantee
actual detection of small stopping sets. This paper addresses
an algorithm that detects stopping sets up to pre-defined size.
The proposed scheme performs a belief-propagation algorithm
with messages carrying the information of originated variable
nodes and their connected edges. Furthermore, a code design
method using the algorithm is presented and the performances
of the designed code over several channels are shown.

II. D EFINITION OF MESSAGE ANDUPDATE PROCESSING

The basic idea of the proposed algorithm is to run a
belief-propagation algorithm on a Tanner graph with particular
messages. A message in the proposed algorithm contains
information on the variable nodes which the message has
passed so far and the edges where the message leaves those
nodes. To deal with the messages, two different kinds of
node update equations are defined: i) for constraint nodes, an
input message entering through one of the connected edge
is distributed as the output messages to the other edges and
ii) for variable nodes, additional information of the current
variable node and the constraint node which the message
propagates to is added to the aggregate of the input messages.
Then, we can examine the existence of a stopping set in
the following way: i) send a particular message to all edges
connected to the variable node under examination, which is
referred to as the starting variable node in the sequel, ii) update

the messages with the node update equations at each node
in the graph, iii) construct a set of input messages entering
the constraint nodes accepting more than two messages or
the variable nodes accepting simultaneous messages through
all connected edges, iv) check whether a subset of nodes
contained in the constructed message set satisfies a particular
condition assuring the presence of a stopping set, and v)
reconstruct a new subset of valid nodes forming a stopping
set out of nodes contained in the constructed message sets.
Here, we define two different types of messages as follows.

The first type message is a binary digit indicating whether
the second type message carries a nontrivial message or
not. The message ‘1’ indicates that the second type message
through the edge carries useful information for stopping set
detection. Note that we can examine cycles in a Tanner graph
with the first type messages [4] and it will be denoted as a
cycle detection (CD) message. The CD message is updated
for each edge connected to variable or constraint node by

µO
(ni,ej)

=


 ⊕

e′j∈E(ni)

µI
(ni,e′j)


⊗

µI
(ni,ej)

, (1)

where µI
(ni,ej)

is the input message of thejth edge, ej ,
entering the nodeni, µO

(ni,ej)
is the output message of the

jth edge,ej , leaving the nodeni, and the operations⊕ and⊗
denote the logical OR and XOR operations, respectively. Also,
E(ni) denotes the set of edges connected to the nodeni. For
the starting variable node, output messages of all connected
edges are ‘1’. Then, the output messages of the neighboring
nodes are calculated by (1). Note that the message ‘1’ cannot
pass an edge more than once [4].

The second type message carries the information of the
variable and the constraint nodes which form the shortest paths
from the starting node. Since this type of message is directly
used for stopping set detection, it will be denoted as stopping
set detection (SD) message. Note that the SD message of an
edge with a null CD message is an empty set and that a
nontrivial SD message can exist only once for each edge. For
a complete definition, a single SD message is defined as the
set of ordered three-tuples containing a variable node and a
constraint node, which uniquely define the information of the
edge connecting them, and a flag set. At any class of node, the
update of an SD message is performed as follows: the initial
output SD message of the starting variable node,v∗, to its

neighboring constraint nodec, ξ(v∗, c), is defined as

ξ(v∗, c) = {(v∗, c,∅)}, (2)

where the third entry is reserved for a flag set, which will
be discussed later. Now, we define some notations used
throughout this paper as follows:

• (n1, n2): the edge connecting the two nodesn1 andn2.
• VI(c) and EI(c) (VO(c) and EO(c)): the sets of the

variable nodes and the corresponding edges with nonzero
output (input) CD messages to (from) the constraint node
c, respectively.

• CI(v) andEI(v) (CO(v) andEO(v)): the sets of the con-
straint nodes and the corresponding edges with nonzero
output (input) CD messages to (from) the variable node
v, respectively.

• (ξ)k,i: the ith entry of thekth three-tuples inξ.
• |A|: the cardinality of a setA.
• hitting node: a variable node accepts nonempty SD mes-

sages through its all connecting edges or a constraint
node accepts nonempty SD messages through at least two
connecting edges.

• Ci (Vi): the set of all hitting constraint (variable) nodes
at theith iteration.

• V (ξ), C(ξ), E(ξ), andF (ξ): the set of the first entries
(variable nodes), the second entries (constraint nodes), the
set of edges connecting the first and the second entries,
and the collection of the nonempty third entries of all
elements in a messageξ, respectively.

• V (Ω), C(Ω), E(Ω), andF (Ω): the unions ofV (ξ), C(ξ),
E(ξ), andF (ξ) for all ξ ∈ Ω, respectively.

• En(Ω): the set of all edges that are both included inE(Ω)
and connected to a noden ∈ V (Ω) ∪ C(Ω).

• V (A) and C(A): the sets of all variable and constraint
nodes in a setA composed of nodes.

Note thatVI(c) and VO(c) (CI(v) and CO(v)) are mutually
exclusive due to (1). Then, the update processing of an SD
message is given as follows:

1) At constraint nodes:The output message leaving a
constraint nodec is given by

ξ(c, v) =

{⋃
v′∈VI(c)ξ̌(v

′, c), if v ∈ VO(c)
∅, otherwise

(3)

where ξ̌(v, c) = ξ(v, c) except that, fork = 1, · · · , |ξ(v, c)|,
(
ξ̌(v, c)

)
k,3

=

{
(ξ(v, c))k,3 if |VI(c)| = 1
(ξ(v, c))k,3 ∪ {v} if |VI(c)| ≥ 2.

(4)

Thus, for messages arriving at a constraint node with at least
two nonzero CD messages, the third entry of each constituent
element is updated by adding the index of the variable node
where the message comes from.

2) At variable nodes:The output message through an edge
(v, c) with a nonzero CD message is defined as the union of
the two sets: the set of input messages entering the variable
nodev in the same way as in a constraint node and the set of

one three-tuple,(v, c,∅). Then, the output message leavingv
through the connected edge(v, c) is updated by

ξ(v, c) =

{(⋃
c′∈CI(v)ξ(c

′, v)
)
∪ {(v, c,∅)} if c ∈ CO(v)

∅ otherwise.
(5)

Thus, one can see that the size of an SD message grows as it
traverses in the graph.

III. STOPPINGSET DETECTION

Now, consider the stopping set detection method. Here,
we assume a node-by-node construction of the parity-check
matrix. Once new edges, as many as the variable node degree,
are added to the graph being constructed, a search for stopping
sets caused by the new edges is performed. Initially, each
output CD message from the starting variable nodev∗ to the
neighboring constraint nodec, c ∈ CO(v∗), are set to ‘1’.
Also, the corresponding output SD messages are set as in (2).
During the belief-propagation processing, each node accepts
messages through the edges connected to itself. A nonzero
input CD message to a node means that the current node and
the edge which the message passed through are included in
a path that may be contained in a stopping set. Also, the
corresponding input SD message carries the information of
the variable and constraint nodes contained in the path. We
refer to a single constraint node update processing and a
single variable node update processing together as a single
iteration. The stopping set detection can be performed twice
in each iteration at the end of each update processing. At the
ith iteration, the aggregate message at each hitting constraint
(variable) nodec ∈ Ci (v ∈ Vi), ξ̄C

i (c) (ξ̄V
i (v)), and the set of

all hitting nodes,ΦC
i (ΦV

i), are obtained as the union of the
messages of the hitting node after the constraint (or variable)
node update processing as follows:

ξ̄C
i (c) =

⋃

(v,c)∈EI(c)

ξ(v, c), (6)

ξ̄V
i (v) =

⋃

(c,v)∈EI(v)

ξ(c, v), (7)

ΦC
i = Ci ∪ Vi−1, (8)

ΦV
i = Ci ∪ Vi, (9)

whereCi and Vi denote
⋃

j≤i Cj and
⋃

j≤i Vj , respectively.
Since (6) and (7) ((8) and (9)) are actually identical operations,
we will omit the superscriptsC andV in the sequel unless it
causes any confusion. Finally, the collection of the aggregate
messages at theith iteration,Ωi, is obtained as

Ωi = {ξ̄i(n)|n ∈ Φi}. (10)

Note thatΩ0 is an empty set. Recall in (4) that, for all the
three-tuples contained in the input SD messages of a hitting
constraint nodec, the adjacent variable node which sent a
nonzero SD message is collected into their last entries as a
flag set. The new element of this flag indicates the variable
node that makes the corresponding three-tuple be collected
into ξ̄i(c) by sending the nonzero SD message toc. If an SD

message passes more than one hitting constraint node, the third
entry of its constituent three-tuples has as many elements as
the number of hitting constraint nodes it has passed. This flag
will facilitate the determination of the nodes to be removed
for the stopping set search.

Let Ni be V (Ωi) ∪ C(Ωi) ∪ Φi and Mi be the subset
of Ni comprised of the variable nodes inV (Ωi) ∪ V (Φi)
and the constraint nodes inC(Ωi) ∪ C(Φi), satisfying the
following conditions: i) all neighboring constraint nodes of
each variable node inMi are contained inMi and ii) at
least two neighboring variable nodes of each constraint node
in Mi are contained inMi. Then, one can see from the
definition of a stopping set thatMi forms a stopping set. Thus,
we can find a stopping set if there exists such a nonempty
Mi in a Tanner graph. To findMi out of nodes inNi,
the following scheme proceeds. Firstly,V (Ωi) andE(Ωi) are
constructed fromΩi. Then, for each variable nodev in V (Ωi),
|Ev(Ωi)| is compared with|EO(v)|. If the two values are the
same, it indicates that all edges ofv are contained inE(Ωi).
Thus, v can be included in a stopping set. We will refer to
this condition as thecardinality condition. If the cardinality
condition is satisfied for every node inV (Ωi), Ni forms a
stopping set. However, there may be some variable nodes in
Ni not satisfying the cardinality condition. Forn ∈ Φi, let
ξ̄f
i (n) ⊂ ξ̄i(n) be the collection of all the three-tuples in̄ξi(n),

whose first entries fail to satisfy the cardinality condition.
Also, let Ωf

i = ∪n∈Φi ξ̄
f
i (n) be the collection of allξ̄f

i (n),
n ∈ Φi. Then, each variable node inV (Ωf

i) has at least one
‘open’ edge in the subgraph constructed byNi. Note that a
node connected to such an ‘open’ edge cannot be included
in a stopping set. Thus, ifV (Ωf

i) is nonempty, we should
remove some nodes from V(Ωi) to examine the existence of a
stopping subsetMi of Ni according to the following removal
procedure.

Procedure 1 The removal procedure is as follows:

i) For eachn ∈ Φi, ξ̄i(n) is erased inΩi and n is erased
in Φi if there exists any constituent three-tuple ofξ̄i(n)
whose first entry is included inV (Ωf

i) and third entry
is an empty set.

ii) For eachn ∈ Φi, each remaining three-tuple in̄ξi(n) is
erased if its first entry is included inV (Ωf

i) or its third
entry is included inF (Ωf

i).
iii) Let Ω′i and Φ′i denote the reduced sets ofΩi and Φi

according to the steps 1 and 2, respectively. Then, for
eachc ∈ C(Φ′i), ξ̄i(c) is erased inΩ′i and c is erased
in Φ′i if |Ec(Ω′)| < 2. Also, for eachv ∈ V (Φ′i), ξ̄i(v)
is erased inΩ′i and v is erased inΦ′i if |Ev(Ω′)| <
|EO(v)|.

Let Ω′′i andΦ′′i denote the resulting reduced sets according to
Procedure 1. If the cardinality condition is satisfied for every
node inV (Ω′′i), Mi = V (Ω′′i)∪C(Ω′′i)∪Φ′′i forms a stopping
set. Whether a stopping set is found or not fromΩ′′i , we can
repeat Procedure 1 to further check the existence of smaller
stopping sets. However, it is not necessary since the smaller

stopping sets should be already found in earlier iterations if
they exist. Thus, the removal procedure is performed only once
in each iteration.

IV. A N EXAMPLE OF STOPPINGSET DETECTION

Fig. 1 illustrates a simple example of the proposed algo-
rithm. Here, for notational simplicity, all variable nodes and
constraint nodes are enumerated in Fig. 1. LetνC

i andνV
i de-

note the set of constraint and variable nodes accepting nonzero
CD messages at theith iteration, respectively. Suppose that
the variable nodev1 and its four edges are newly added to
the graph under construction (νV

0 = {v1}). Initially, the CD
messages through all connected edges of nodev1 are ‘1’ and
the corresponding SD messages to the neighboring constraint
nodesνC

1 = {c1, c2, c3, c12} are defined as

ξ(v1, c1) = {(v1, c1,∅)}, ξ(v1, c2) = {(v1, c2,∅)}
ξ(v1, c3) = {(v1, c3,∅)}, ξ(v1, c12) = {(v1, c12,∅)}, (11)

respectively. At the constraint node update of the first iteration,
the input SD messages entering each constraint node are
transparently distributed according to (1). Note that the set
of variable nodes for nonempty output SD messages is

νV
1 = {v2, v3, v4, v5, v6, v14, v15}. (12)

Since ΩC
1 is empty, the belief propagation proceeds. At the

variable node update of the first iteration, the variable node
v15 accepts nonempty SD messages through its all connected
edges. Thus,v15 is collected inV1, the messages enteringv15

form the aggregate message,ξ̄1(v15), and ξ̄1(v15) is collected
in ΩV

1 . Then, we can see thatV (ΩV
1) = {v1}. Since two edges

(the second and the third edges ofv1) are missing inEv1(Ω
V
1),

v1 fails to satisfy the cardinality condition. After the removal
procedure, we see that(ΩV

1)′ is empty. Thus, no stopping set
is found and the belief propagation continues. Each variable
node inνV

1 makes its output CD and SD messages according
to (1) and (3), respectively. Then,νC

2 is given as

νC
2 = {c4, c5, c6, c7, c8, c9, c10, c11}. (13)

At the constraint node update of the second iteration, the
constraint nodesc5,c8 and c9 are hitting nodes. Thus they
are included inC2 and their aggregate messages are included
in ΩC

2 together with ξ̄1(v15) in ΩV
1 . For every three-tuple

contained in the aggregate messages collected at the constraint
node c5, c8, and c9, the flag set is updated by including
the variable node which sent a nonempty SD message at the
previous iteration. For instance, the aggregate message ofc5

can be expressed as

ξ̄C
2 (c5) = {(v1, c1, {v2}), (v2, c2, {v2}), (v1, c1, {v3}),

(v3, c1, {v3}), (v1, c2, {v3})}. (14)

The cardinality condition check onV (ΩC
2) shows that

some connected edges of variable nodes inV ((ΩC
2)f) =

{v2, v3, v4, v6} are missing. Also, we obtain

(ΩC
2)f = {{(v2, c5, {v2}), (v3, c5, {v3})}, {(v4, c8, {v4})},

{(v6, c9, {v6})}} (15)

5 6 7 8 9 10 11

109 1211

14

13

15

8

12

1

1 2 3

4

32 5 64

7

5 6 7 8 9 10 11

109 1211

14

13

15

8

12

1

1 2 3

4

32 5 64

7

5 6 7 8 9 10 11

109 1211

14

13

15

8

12

1

1 2 3

4

32 5 64

7

V0

C1

V0

C1

V1

C2

V0

C1

V1

C2

V2

1

CΩ =∅

1st constraint node processing

2nd constraint node processing

2nd variable node processing

()()
{ }() { }() { }() { }() { }()
{ }() { }() { }() { }()
{ }() { }() { }() { }()

()

() () { }() { }()

15 1 1 1 12

5 1 1 2 2 5 2 1 1 3 1 5 3 1 2 3

2

8 1 2 4 4 8 4 1 3 5 5 8 5

9 1 3 5 5 9 5 1 3 6 6 9 6

1 2 e 1 1 1 1 2 1 1 3

2

V , , , , ,

C , , , , , , , , , , , , , ,

C , , , , , , , , , , ,

C , , , , , , , , , , ,

E N ({ , , , , , , , , ,

E

C

C

v

C

V

v c v c

v c v v c v v c v v c v v c v

v c v v c v v c v v c v

v c v v c v v c v v c v

v c v c c v c v

 ∅ ∅ 
 
 

Ω =  
 
 
 

Ω = ∅

Ω =

{ }()
{ }() { }() { }()() ()

() { }(){ }() ()

() { }(){ }() ()

() { }(){ }() ()

() { }() { }(){ }() ()

() { }(){ }() ()

1 2 3

1 2 4 1 3 5 1 3 6 1 12 1

2 2 e 2 5 2 2

3 2 e 3 5 3 3

4 2 e 4 8 4 4

5 2 e 5 8 5 5 9 5 5

6 2 e 6 9 6 6

, , ,

, , , , , , , , , , , }) 4

E N , , 1 2

E N , , 1 2

E N , , 1 2

E N , , , , , 2

E N , , 1 3

O

C

v O

C

v O

C

v O

C

v O

C

v O

v c v

v c v v c v v c v v c E v

v c v E v

v c v E v

v c v E v

v c v v c v E v

v c v E v



 ∅ = =

 Ω = = ≠ =

 Ω = = ≠ =

Ω = = ≠ =

Ω = = =

Ω = = ≠ =










()

()()
{ }() { }() { }() { }() { }()
{ }() { }() { }() { }()
{ }() { }() { }() { }()

()() { }() { }() { }()
{ }()

15 1 1 1 12

5 1 1 2 2 5 2 1 1 3 3 5 3 1 2 3

8 1 2 4 4 8 4 1 3 5 5 8 5

9 1 3 5 5 9 5 1 3 6 6 9 6

1 1 2 1 1 1 2 2 5 2 1 1 3

7

3 5 3 1

2

V , , , , ,

C , , , , , , , , , , , , , ,

C , , , , , , , , , , ,

C , , , , , , , , , , ,

, , , , , , , , , , , , , , ,
V

, , , ,
V

v c v c

v c v v c v v c v v c v v c v

v c v v c v v c v v c v

v c v v c v v c v v c v

v c v c v c v v c v v c v

v c v v

∅ ∅

∅ ∅

Ω =
{ }()

{ }() { }() { }() { }() { }()
()()()

()()()() { }()
{ }() { }() { }()
{ }() { }() { }() { }()

2 3

1 1 2 2 5 2 1 1 3 3 5 3 1 2 3

8

1 1 3 6 1 2

1 1 3 6 1 2 4 7 1 3 5

9

5 9 5 1 3 6 6 9 6

1 2 4 4 8 4 1 3 5 5 8 5 1 3

10

,

, , , , , , , , , , , , , , ,
V

, , , , , , , ,

, , , , , , , , , , , , , , ,
V

, , , , , , , ,

, , , , , , , , , , , , ,
V

c v

v c v v c v v c v v c v v c v

v c v c v c

v c v c v c v c v c v

v c v v c v v c v

v c v v c v v c v v c v v c








∅ ∅ ∅

 ∅ ∅ ∅ ∅



()
()6 10

, ,

, ,v c

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
  ∅
 

∅  

()

()()

{ }() { }()
{ }() { }()

()

()

()

() ()(){ }

() () ()

15 1 1 1 12

5

2
8 1 3 5 5 8 5

9 1 3 5 5 9 5

5 2

8 2

9 2

2 15 1 1 1 12

1 2 e 1 1 1 12

2

V , , , , ,

C

C , , , , ,

C , , , , ,

| ()|0 2

| ()|1 2

| ()|1 2

V , , , , ,

|E ()|N , , , , ,
|E ()|

C

C

c

C

c

C

c

C

C

vC

V

v c v c

v c v v c v

v c v v c v

E

E

E

v c v c

v c v c

 ∅ ∅ 
 ∅ ′Ω =  
 
 
 

 ′Ω = <
 ′Ω = <


′ Ω = <


′′Ω = ∅ ∅

′′Ω = ∅′′Ω =
(){ }()

()12 4
O
E v

 ∅

 = ≠ =

5 6 7 8 9 10 11

109 1211

14

13

15

8

12

1

1 2 3

4

32 5 64

7

V0

C1

V1

()()

()
() ()(){ }()

()

()

1 15 1 1 1 12

1 1 e 1 1 1 12

1

1

1

{V , , , , , }

E N , , , , ,
E

2 4

V

V

v
V

V

O

V

v c v c

v c v c

E v

Ω = ∅ ∅

 Ω = ∅ ∅
Ω = 

= ≠ =

′Ω =∅

1st variable node processing

()

()
() { }() { }()()

{ }() { }()() { }()
{ }()()

()

() () { }(){ }() ()

() { }()(){ }() ()

()

2

1 1 1 1 2 1 1 3 1 2

1 2 e 1 2 3 1 2 4 1 3 1 3 5

1 3 6 1 4

1

2 2 e 2 4 2 5 2 2

3 2 e 3 5 3 3 6 3

4 2 e 4

E

, , , , , , , , , , , ,

E N (, , , , , , , , , , , ,)

, , , , ,

4

E N , , , , , 2

E N , , , , , 2

E N ,

V

V

V

v

O

V

v O

V

v O

V

v

v c v c v v c v v c

v c v v c v v c v c v

v c v v c

E v

v c v c v E v

v c v v c E v

v c

Ω =

 ∅ ∅
  

Ω = ∅ 
 

∅  

= =

Ω = ∅ = =

Ω = ∅ = =

Ω = () { }(){ }() ()

() { }() { }(){ }() ()

() { }()(){ }() ()

7 4 8 4 4

5 2 e 5 8 5 5 9 5 5

6 2 e 6 9 6 6 10 6

, , , , 2

E N , , , , , 2

E N , , , , , 2 3

O

V

v O

V

v O

v c v E v

v c v v c v E v

v c v v c E v















∅ = =


Ω = = =

 Ω = ∅ = ≠ =

()

() ()

()

()
() { }() { }()()

{ }() { }() { }() { }()
()

()

() () { }(){ }()

9 2

9 2 9

2

1 1 1 1 2 1 1 3 1 2

1 2 e 1 2 3 1 2 4 1 3 5 1 3 6

1 12

1

2 2 e 2 4 2 5 2

| ()|2 2

| ()| 3

|E ()|

, , , , , , , , , , , ,

|E ()|N (, , , , , , , , , , , ,)

, ,

4

|E ()|N , , , , ,

V

c

V

v I

V

V

V

v

O

V

v O

E

E E v

v c v c v v c v v c

v c v v c v v c v v c v

v c

E v

v c v c v E

 ′Ω = ≥


′ Ω = =

′′Ω =

 ∅ ∅
  ′′Ω =  
 

∅  

= =

′′Ω = ∅ = ()

() { }()(){ }() ()

() () { }(){ }() ()

() { }() { }(){ }() ()

2

3 2 e 3 5 3 3 2 3

4 2 e 4 7 4 8 4 4

5 2 e 5 8 5 5 9 5 5

2

|E ()|N , , , , , 2

|E ()|N , , , , , 2

|E ()|N , , , , , 2

V

v O

V

v O

V

v O

v

v c v v c E v

v c v c v E v

v c v v c v E v










 =

 ′′Ω = ∅ = =


′′ Ω = ∅ = =

 ′′Ω = = =

: Cardinality condition is satisfied for all nodes

: All constraint nodes lack

their connected edges

: No constituent node lacks

its connected edges

5 6 7 8 9 10 11

109 1211

14

13

15

8

12

1

1 2 3

4

32 5 64

7

Recovered stopping set

()

()

()()
{ }() { }() { }() { }() { }()
{ }() { }() { }() { }()
{ }() { }()

()() { }() { }() { }()
{ }() { }()

15 1 1 1 12

5 1 1 2 2 5 2 1 1 3 3 5 3 1 2 3

8 1 2 4 4 8 4 1 3 5 5 8 5

9 1 3 5 5 9 5

1 1 2 4 1 1 2 2 5 2 1 1 32

7

3 5 3 1 2 3

2

V , , , , ,

C , , , , , , , , , , , , , ,

C , , , , , , , , , , ,

C , , , , ,

, , , , , , , , , , , , , , ,
V

, , , , ,

V

V

v c v c

v c v v c v v c v v c v v c v

v c v v c v v c v v c v

v c v v c v

v c v c v c v v c v v c v

v c v v c v

∅ ∅

′′ ∅ ∅Ω
=

 ′= Ω 
  { }() { }() { }() { }() { }()

()()()

()()()() { }()
{ }()

1 1 2 2 5 2 1 1 3 3 5 3 1 2 3

8

1 1 3 6 1 2

1 1 3 6 1 2 4 7 1 3 5

9

5 9 5

, , , , , , , , , , , , , , ,
V

, , , , , , , ,

, , , , , , , , , , , , , , ,
V

, ,

v c v v c v v c v v c v v c v

v c v c v c

v c v c v c v c v c v

v c v

 
 
 
 
 
 
 

 
 
  
 
 
 ∅ ∅ ∅ 
  ∅ ∅ ∅ ∅
 
  

(i) (ii)

(iii)

(iv)

(v)

Fig. 1. An example of stopping set detection method.

andF ((ΩC
2)f) = {{v2}, {v3}, {v4}, {v6}}. Here, we see that

no element inV ((ΩC
2)f) is contained in a three-tuple with

an empty flag set. Thus,(ΩC
2)′ is obtained fromΩC

2 by
removing all three-tuples whose first element is inV ((ΩC

2)f)
or third element is inF ((ΩC

2)f) according the second step
of Procedure 1. Now, we see that(ΦC

2)′ = {v15, c5, c8, c9}
and that|Ec5((Ω

C
2)′)| = 0 < 2, |Ec8((Ω

C
2)′)| = 1 < 2 and

|Ec9((Ω
C
2)′)| = 1 < 2. Thus, from the third step of Procedure

1, (ΦC
2)′′ are obtained by erasingc5, c8 and c9 in (ΦC

2)′

and(ΩC
2)′′ is obtained by erasing the corresponding aggregate

messages in(ΩC
2)′ as

(ΩC
2)′′ = {{(v1, c1,∅), (v1, c12,∅)}} (16)

One can see that the cardinality condition check on(ΩC
2)′′

is failed since|Ev1((Ω
C
2)′′)| = 2 < EO(v1) = 4. At the

variable node update of the second iteration, the aggregate
messages at variable nodesv7, v8, v9 andv10 are newly added
to updateΩV

2 . Since onlyv6 fails to satisfy the cardinality
condition, the removal procedure is performed as follows:
according to the step i),v10 and the corresponding aggregate
message are removed fromΦV

2 and ΩV
2 , respectively. Then,

according to the step ii), the three tuples(v1, c3, {v6}) and
(v6, c9, {v6}) are erased. In the step iii), it is easily seen that
no node in(ΦV

2)′ should be erased. Thus,(ΩV
2)′ and (ΩV

2)′′

are the same. Finally, one can easily see thatV ((ΩV
2)′′) =

{v1, v2, v3, v4, v5} and all the variable nodes inV ((ΩV
2)′′)

satisfy the cardinality condition. Therefore, the variable node
set of a stopping setS is determined as

V (S) = {v1, v2, v3, v4, v5, v7, v8, v9, v15} (17)

Note that the proposed algorithm does not guarantee that
the detected set is the minimal stopping set. Here, the vari-
able node set of the minimal stopping set isV (Smin) =
{v1, v2, v3, v4, v5, v7, v9, v15}. However, since the stopping set
is a set of nodes, the same set is detected when the starting
variable node is set to different variable node in the stopping
set. Then, the minimal stopping set can be very often found
by choosing the smallest set out of the similar stopping sets
detected with different starting variable nodes.

V. THE OUTLINES OF LDPC CODE DESIGN ALGORITHM

AND CODE DESIGN EXAMPLE

Let rS denotes the radius of the stopping setS which is
defined as the number of the node update processing until the
stopping set is detected. This quantity is used for an LDPC
code design as well as the number of variable nodes in the
stopping setS. Since it is likely that a stopping set with
larger radius has more nodes contained in it, the large radius
is beneficial for the good code design. Also, the code designed
only by the stopping set detection often shows the degraded bit
error performance in low SNR region because a large number
of connected small cycles constituting a large stopping set
degrades a message-passing decoding performance. Therefore,
a small cycle conditioning is essentially applied together with
the stopping set detection.

In Fig. 2, the outlines of the code design algorithm using the
proposed detection method are summarized. Here,Nv(n) and
Nc(m) are the node degrees for thenth variable node and the
mth constraint node, respectively. For a new variable node, a

() ()

{ }

()

Input : , , , , , 0, , 1, , 0, , 1

 1: set 0, 0, 0, , 1

 2: do

 3: 0

 4: while ()

 5: choose randomly elements among the elements with nonzero

cycle v c

c

try

v c

N K L L N n n N N m m N K

n ind R N K

l

l N

N n R

= − = − −

← ← ← − −

←

<

′

… …

…

()

() ()

()

remaining degree

 6: form -tuple with randomly chosen elements

 7: evaluate the cycle distribution up to 2 caused by edge configuration

 8: if all cycles associa

c

v v

c

N m

N n N n

f L

e

c e

()

() () ()

()

ted with is larger than

 9: execute the stopping set detection

10: evaluate the metric with the number of variable nodes and the radius

11: if is bett

c cycle

s S

s

f L

f V r

f

c

c c c

c ()

() ()

()

() ()() ()()

er than *

12: update * , *

13: endif

14: endif

15: 1

16: endwhile

17: for (0; ;)

18: () , () * , * * 1

19: e

s

s s

v

c c

f

f f

l l

k k N n k

VIndex ind k n CIndex ind k k N k N k

← ←

← +

= < ++

+ ← + ← ← −

c

c c c c

c c c

()

ndfor

20: , 1

21: while ()

Output : ,

vind ind N n n n

n N

VIndex CIndex

← + ← +

<

Fig. 2. The outline of the proposed code design algorithm

random configuration of edges connecting that variable node
to Nv(n) constraint nodes is placed in the Tanner graph being
constructed. A sufficiently large number of random edge con-
figuration is examined for a short-length cycle conditioning.
We used the algorithm proposed in [4], which is very similar
to the equation (1), to evaluate the distribution of cycles with
relatively short lengths. If all cycles caused by addition of new
Nv(n) edges are larger than pre-defined cycle length, stopping
set detection is performed for such edge configurations. The
outputs of stopping set detection are the number of constituent
variable nodes and the set radius. With these two values,
a metric function for a stopping set is evaluated. We used
a weighted sum of two values for the metric function. If
new metric function is better than the currently best metric
function, the best metric function is updated and its edge
configuration is stored. After sufficiently large number of
random edge configurations, the best edge configuration is
chosen for the position of newNv(n) edges. The same edge
placement processing is repeated untiln < N .

We used the proposed algorithm to construct a simple
irregular codes of(N, K) = (800, 300) and (800, 500). The
codewords were sent through binary erasure channel (BEC)
and additive white Gaussian noise (AWGN) channel. Three
kinds of LDPC codes are designed for comparison. A girth-
conditioned code is designed by only checking whether the
girth is larger than pre-defined length. The ACE [3] is a metric
for implicit stopping set conditioning method. The correspond-
ing code is designed by placing edges which maximize the
sum of the variable node degrees contained in cycles. All
designed codes are guaranteed to remove short cycles of length
at least 6. Fig. 3 depicts the performance over BEC. The
performance over BEC distinguishes the codes designed by
the proposed method from other codes designed by existing
methods because it strictly depends on the designed code
structure. The performance over AWGN channel is plotted in
Fig. 4. The sum-product algorithm is performed with iteration
number of 50 for decoding. While the performance in the

00.10.20.30.40.50.60.70.80.91

10
−4

10
−3

10
−2

10
−1

10
0

C
od

ew
or

d
er

ro
r

pr
ob

ab
ili

ty

Erasure probability

Prop. (R=3/8,N=800)
Girth (R=3/8,N=800)
ACE (R=3/8,N=800)
Prop. (R=5/8,N=800)
Girth (R=5/8,N=800)
ACE (R=5/8,N=800)

Fig. 3. Simulation result for designed codes over binary erasure channel.

−1 0 1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
it

er
ro

r
pr

ob
ab

ili
ty

Eb/No

Prop. BER (R=3/8,N=800)
Girth BER (R=3/8,N=800)
ACE BER (R=3/8,N=800)
Prop. BER (R=5/8,N=800)
Girth BER (R=5/8,N=800)
ACE BER (R=5/8,N=800)

Fig. 4. Simulation result for designed codes over AWGN channel.

low SNR region is similar because relatively short cycles are
conditioned for all codes, the code designed by the proposed
algorithm has a performance improvement in the error floor
region.

VI. CONCLUSION

In this paper, a stopping set detection scheme using a belief-
propagation algorithm was proposed for designing an LDPC
code. The proposed scheme can detect the existence of stop-
ping sets by using two-step belief-propagation algorithm. The
constituent nodes of the detected stopping set are recovered
from the messages and their number is used for the code
design. The simulation results showed that the proposed LDPC
codes outperforms conventional LDPC codes over BEC and
AWGN channels, especially in the error floor region.

REFERENCES

[1] D. J. C. MacKay, “Good error correcting codes based on very sparse
matrices,”IEEE Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.

[2] C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke, “Finite
length analysis of low-density parity-check codes on the binary erasure
channel,”IEEE Trans. Inform. Theory, vol. 48, pp. 1570-1579, June 2002.

[3] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction
of irregular LDPC codes with low error floors,”Proc. IEEE Int. Conf.
Comm., vol. 5, pp. 3125-3129, Anchorage, AK, U.S.A., May 2003.

[4] S. H. Lee, K. S. Kim, Y. H. Kim, and J. Y. Ahn, “ A cycle search
algorithm for an LDPC code design”,Proc. Int. Symp. Inform. Theory
and Applications, Wed 2-2-5, Parma, Italy, Oct. 2004.

