Design of an LDPC Code with Low Error Floor

*Sang Hyun LeelKwang Soon Kim,*Jae Kyun Kwon}Yun Hee Kim, and*Jae Young Ahn

* Telecomm. Research Lab., t Department of Electrical t School of Electronics
Electronics and Telecommunications and Electronic Engineering, and Information,
Research Institute, Daejeon, Korea Yonsei University, Seoul, Korea Kyung Hee University, Korea

E-mail: {sh-lee, jack, jyahp@etri.re.kr E-mail: ks.kim@yonsei.ac.kr E-mail: yheekim@khu.ac.kr

Abstract— A search algorithm for stopping sets in a Tanner the messages with the node update equations at each node
graph is proposed for designing good low-density parity-check in the graph, iii) construct a set of input messages entering
(LDPC) codes. By applying the belief-propagation algorithm with e constraint nodes accepting more than two messages or
messages containing the information of originated variable nodes . . .
and their connected edges, the stopping sets can be detectegtN€ variable nodes acqeptlng simultaneous messages through
Furthermore, a code design method using the algorithm is all connected edges, iv) check whether a subset of nodes
presented and the performances of the designed code over severatontained in the constructed message set satisfies a particular
channels are shown. condition assuring the presence of a stopping set, and V)
reconstruct a new subset of valid nodes forming a stopping
set out of nodes contained in the constructed message sets.

An LDPC code has attracted much consideration due to Here, we define two different types of messages as follows.
performance very close to the Shannon capacity limit under theThe first type message is a binary digit indicating whether
assumption of asymptotically long codeword length. Howevethe second type message carries a nontrivial message or
it has been reported that a moderate-length code suffers fragt. The message ‘1’ indicates that the second type message
an error floor in a high SNR region [1]. Also, it has been showthrough the edge carries useful information for stopping set
that, under message-passing decoding, small stopping setddtection. Note that we can examine cycles in a Tanner graph
the graph dominantly give rise to high error floors [2]. Alwith the first type messages [4] and it will be denoted as a
though a conditioning method for implicit alleviation of errorcycle detection (CD) message. The CD message is updated
floors has been proposed to make degrees of nodes associatedach edge connected to variable or constraint node by
with small cycles high [3], the method does not guarantee
actual detection of small stopping sets. This paper addresses o _ @ I ® I 1)
an algorithm that detects stopping sets up to pre-defined size. /() Hinie)) HFinies)

The proposed scheme performs a belief-propagation algorithm
with messages carrying the information of originated variablghere u{nhe,) is the input message of thgth edge,e;,
nodes and their connected edges. Furthermore, a code desigering theJ nodex;, Mon, ..y is the output message of the
method using the algorithm is presented and the performanges edge.e;, leaving the node;, and the operations and®

of the designed code over several channels are shown. denote the logical OR and XOR operations, respectively. Also,
E(n;) denotes the set of edges connected to the mgdEor

the starting variable node, output messages of all connected

The basic idea of the proposed algorithm is to run edges are ‘1’. Then, the output messages of the neighboring
belief-propagation algorithm on a Tanner graph with particulaodes are calculated by (1). Note that the message ‘1’ cannot
messages. A message in the proposed algorithm contgiass an edge more than once [4].
information on the variable nodes which the message hasThe second type message carries the information of the
passed so far and the edges where the message leaves thensable and the constraint nodes which form the shortest paths
nodes. To deal with the messages, two different kinds frtbm the starting node. Since this type of message is directly
node update equations are defined: i) for constraint nodes,eed for stopping set detection, it will be denoted as stopping
input message entering through one of the connected edg¢e detection (SD) message. Note that the SD message of an
is distributed as the output messages to the other edges adde with a null CD message is an empty set and that a
ii) for variable nodes, additional information of the currenhontrivial SD message can exist only once for each edge. For
variable node and the constraint node which the messageomplete definition, a single SD message is defined as the
propagates to is added to the aggregate of the input messages.of ordered three-tuples containing a variable node and a
Then, we can examine the existence of a stopping setdanstraint node, which uniquely define the information of the
the following way: i) send a particular message to all edgeslige connecting them, and a flag set. At any class of node, the
connected to the variable node under examination, whichupdate of an SD message is performed as follows: the initial
referred to as the starting variable node in the sequel, ii) updatgput SD message of the starting variable node,to its

I. INTRODUCTION

e, €E(n;)

II. DEFINITION OF MESSAGE ANDUPDATE PROCESSING

neighboring constraint node £(v*, ¢), is defined as one three-tuple(v, ¢, &). Then, the output message leaving
. . through the connected edge, c) is updated by
E(v*,c) ={(v",c,2)}, (2)

, ,
where the third entry is reserved for a flag set, which wilf(v,c) = {(UC'GCI(”)&C ’U)) Ui, e @)} it ce QO(U)
be discussed later. Now, we define some notations used) otherwise

throughout this paper as follows: ' (5) .
(n1,71): the edge connecting the two nodes andn Thus, one can see that the size of an SD message grows as it
b 1,702)- 2-

e Vi(c) and E;(c) (Vo(c) and Ep(c)): the sets of the traverses in the graph.
variable nodes and the corresponding edges with nonzero I1l. STOPPINGSET DETECTION
output (input) CD messages to (from) the constraint node o\, consider the stopping set detection method. Here,
¢, respectively. we assume a node-by-node construction of the parity-check

« Cr(v) andE;(v) (Co(v) andEp(v)): the sets of the con- oy Once new edges, as many as the variable node degree,
straint nodes and the corresponding edges with nonzefQ, »qqed to the graph being constructed, a search for stopping
output (input) CD messages to (from) the variable nodgys caused by the new edges is performed. Initially, each
Y respecﬂyely.) output CD message from the starting variable noti¢o the

o (§r: the Zth_ entry of thekth three-tuples ire. neighboring constraint node, ¢ € Co(v*), are set to ‘1".

* |A[: the cardinality of a sefl. Also, the corresponding output SD messages are set as in (2).

« hitting node: a variable node accepts nonempty SD M§Sying the belief-propagation processing, each node accepts
sages through its all connecting edges or a constrajfbssages through the edges connected to itself. A nonzero
node accepts nonempty SD messages through at least 4+ cp message to a node means that the current node and
connecting edges. .) i the edge which the message passed through are included in

o« C; (V) th_e set of all hitting constraint (variable) nodes, path that may be contained in a stopping set. Also, the
at thesth iteration. . . corresponding input SD message carries the information of

« V(€), C(¢), B(§), and F(): the set of the first entries y,o yariaple and constraint nodes contained in the path. We
(variable nodes), the second entries (constraint nodes), g, 14 4 single constraint node update processing and a
set of edges connecting the first and the second entrigg e yariable node update processing together as a single
and the c_ollecﬂon of the nonempty third entries of a%eration. The stopping set detection can be performed twice
elements in a message respectively. in each iteration at the end of each update processing. At the

« V(Q),C(Q), E(2), andF(§2): the unions of/(£), C(E), it iteration, the aggregate message at each hitting constraint
E(¢), and F(¢) for all £ € ©, respectively. (variable) node: € C; (v € Vy), &7 (¢) (£ (v)), and the set of

« E,(9): the set of all edges that are both includediif2) o pitting nodes,®¢ (#Y), are obtained as the union of the

and connected to a nodec V(£2) U _C(Q)' _ messages of the hitting node after the constraint (or variable)
« V(A) and C(A): the sets of all variable and constraint, 4o update processing as follows:

nodes in a sed composed of nodes.

Note thatV;(c) and Vo (c) (C;(v) and Co(v)) are mutually &) = U €0, (6)
exclusive due to (1). Then, the update processing of an SD (v,c)€Er(c)
message is given as follows: &) = U (e, v), 7)
1) At constraint nodes:The output message leaving a (c,v)EE (v)
constraint node: is given by ¢ = C,UVi, ®)
5() {U'U/EVI(C)S(U/’ C)’ If v E VO(C) (3) ¢:/ = Cl U ‘/tiv (9)
c,v) = .
a, otherwise where C; and V; denotelJ,, C; and U, V;, respectively.
where£(v, ¢) = £(v, ¢) except that, fork = 1,-- - , |€(v,), Since (6) and (7) ((8) and (9)) are actually identical operations,

we will omit the superscript€’ and V' in the sequel unless it
5 (€(v,0)) 5 it [Vi(c) =1 causes any confusion. Finally, the collection of the aggregate
(€, 0), 5 = ’ . (4) messages at thih iteration,(2;, is obtained as
' (€(v,0))p 3 U{vt if [Vi(c)| > 2.)

Thus, for messages arriving at a constraint node with at least 2 ={&(n)ln € @i} (10)
two nonzero CD messages, the third entry of each constitudfdte thatQ), is an empty set. Recall in (4) that, for all the
element is updated by adding the index of the variable notteee-tuples contained in the input SD messages of a hitting
where the message comes from. constraint nodec, the adjacent variable node which sent a

2) At variable nodesThe output message through an edgeonzero SD message is collected into their last entries as a
(v, ¢) with a nonzero CD message is defined as the union ftdg set. The new element of this flag indicates the variable
the two sets: the set of input messages entering the variabtale that makes the corresponding three-tuple be collected
nodew in the same way as in a constraint node and the setiofo &;(c) by sending the nonzero SD message:.ttf an SD

message passes more than one hitting constraint node, the tsiiogpping sets should be already found in earlier iterations if
entry of its constituent three-tuples has as many elementstlasy exist. Thus, the removal procedure is performed only once
the number of hitting constraint nodes it has passed. This flageach iteration.

will facilitate the determination of the nodes to be removed

for the stopping set search. .] .

Let N; be V() U C(9;) U ®; and M; be the subset Fig. 1 illustrates a simple example of the proposed algo-
of \; comprised of the variable nodes Wi(Q;) U V(&) rithm. Here, for notational S|mpI|c_|ty, f’i” variable nodes and
and the constraint nodes ifi(2;) U C(®;), satisfying the constraint nodes are gnumerateq in Fig. 1.1@%tandu.i" de-
following conditions: i) all neighboring constraint nodes oftote the set of constraint and variable nodes accepting nonzero
each variable node in\; are contained inM; and ii) at CD messages at thih iteration, respectively. Suppose that
least two neighboring variable nodes of each constraint nodl¢ variable node, and its four edges are newly added to
in M, are contained inM,. Then, one can see from thethe graph under constructiomy(= {v1}). Initially, the CD
definition of a stopping set tha¢t; forms a stopping set. Thus, Messages through all connected edges of nedare ‘1’ and
we can find a stopping set if there exists such a nonemﬁﬂﬂ corresponding SD messages to the neighboring constraint
M, in a Tanner graph. To find\; out of nodes inA;, nodesv’ ={ci,co,c3,c12} are defined as
the following scheme proceeds. Firstly,(Qi) and E(Qi) are ¢(yy,c) = {(v1,c1,9)}, &(vi,c2) = {(v1,c2,9)}
constructed fronf2;. Then, for each variable nodein V(£;), E(vr,c5) = {(v1, 03, @)}, E(vr,e12) = {(v1, c12, D)}
|E, ()] is compared with Eo (v)]. If the two values are the Lo Ak 1o L
same, it indicates that all edges ofare contained inF(€2;). respectively. At the constraint node update of the first iteration,
Thus, v can be included in a stopping set. We will refer téghe input SD messages entering each constraint node are
this condition as thecardinality condition If the cardinality transparently distributed according to (1). Note that the set
condition is satisfied for every node i¥i(Q;), N; forms a of variable nodes for nonempty output SD messages is
stopping set. However, there may be some variable nodes in
N; not satisfying the cardinality condition. For ¢ ®;, let
&/ (n) c &(n) be the collection of all the three-tuplesgn(n), Since Qf' is empty, the belief propagation proceeds. At the
whose first entries fail to satisfy the cardinality conditionvariable node update of the first iteration, the variable node
Also, let @/ = U,ca,&/ (n) be the collection of al/ (n), v1s accepts nonempty SD messages through its all connected
n € ®;. Then, each variable node (/) has at least one €dges. Thusy;; is collected inVy, the messages enterings
‘open’ edge in the subgraph constructed &y. Note that a form the aggregate message(vi;), and: (vis) is collected
node connected to such an ‘open’ edge cannot be includgd?; - Then, we can see th&t(Q;") = {v,}. Since two edges
in a stopping set. Thus, it () is nonempty, we should (the second and the third edgesweJ are missing ine,, (),
remove some nodes from §() to examine the existence of av1 fails to satisfy the cardinality condition. After the removal
stopping subsetM; of A; according to the following removal Procedure, we see thé®’)’ is empty. Thus, no stopping set

IV. AN EXAMPLE OF STOPPINGSET DETECTION

11)

vy = {v2,v3, 04, V5, V6, V14, V15 }- (12)

procedure. is found and the belief propagation continues. Each variable
node inv)” makes its output CD and SD messages according
Procedure 1 The removal procedure is as follows: to (1) and (3), respectively. Theny is given as
i) For eachn € ®;, &(n) is erased in); andn is erased v$ = {cy, 5, ¢6, 7, Cs, Co, C10, C11 }- (13)

in ®; if there exists any constituent three-tupleépfn)
whose first entry is included ih’(Qlf) and third entry
is an empty set.

i) For eachn € ®;, each remaining three-tuple i} (n) is
erased if its first entry is included i (/) or its third
entry is included inF(€2)).

At the constraint node update of the second iteration, the
constraint nodess,cs and cg are hitting nodes. Thus they
are included inC, and their aggregate messages are included
in QF together with&; (vy5) in QY. For every three-tuple
contained in the aggregate messages collected at the constraint

iii) Let ©/ and denote the reduced sets 6f and &; 10U cs, cs, and ¢y, the flag set is updated by including
accoraing to ihe steps 1 and 2, respectively. Then, fme variable node which sent a nonempty SD message at the
eache € C()), &(c) is erased in2, and ¢ is erased previous iteration. For instance, the aggregate message of
in ® if |E.(2)| < 2. Also, for eachv € V(®}), §,(v) 3N be expressed as
is erased inQ; and v is erased in®; if |E,(Q)] < £(cs) = {(v1,e1,{va}), (v2, o, {wa}), (v1,¢1, {vs}),
|Eo(v)]. (v, c1,{v3}), (v1, ¢, {v3})}- (14)

Let (2" and &} denote the resulting reduced sets according fthe cardinality condition check or/(Q5) shows that
Proce_dure 1”. If the cardm?hty COI’]/(/ZiItIOI’]NIS satisfied for evelyome connected edges of variable nodesVif(Q§)7) =
node inV ('), M = V() UC(Q2]) U® forms a stopping {, v, vy, v} are missing. Also, we obtain

set. Whether a stopping set is found or not fré¥, we can o

repeat Procedure 1 to further check the existence of small€z)’ = {{(v2,cs5,{v2}), (vs, c5,{vs})}, {(v4, s, {va})},
stopping sets. However, it is not necessary since the smaller {(vs, co,{v6})}} (15)

Q=0

(i
Vo

-

=tV (a.2)(h.6 D)

)
" ﬁ o) o‘e ® o[- O0 Ml 0 0)
nﬁlﬁn oy

QOOOOO®O

1st variable node processing

)

Recovered stopping set

B (@) =N, ({060 94 1) (oo v D)= (02) =2
B0 (@) =N, (oen i)})=1#] (v) =3

@) :{\ (@) N (0602).01609))

:2¢‘E“(v‘X:4

s (9.6.9),(v.¢,,.9) Vis (%,¢.D),(v.¢.D) Vi (@) (i)
D) N) N N (Y (R B T c 500G b1y G))
A R YRR)Y ()) S RTINS c D) o)
(e) e) G (e 1) (e (1)) c,)

[E. (@)= N6 D). (e fes (e) (o o [EL((@6)02 {4 constant nodes lack @) |, RO ON) Y RN) YRS 1))

(e) s) M@ =18, 004 |] oo (@) B

[E. @) =N, (e)12 50 () =2 - v { sl PICRREHICRN N
o @ N (e bR 1415)2 @12 (1610 (02, (1::2)

[, @)= N (e G120 () =2 @) =V (16,2, (.¢,0)} v, &?}()@)(@)(@)(“)

1E.()’) =|E, (v)=3 :No constituent node lacks

{\ E (@))=222

W Vis (%.¢.9).(v.¢,,.2) | its connected edges
S R) N CHN) CRER) S (RN CH) N CRER ()] (@)=
Cy (a0 (s) G). (v (1) (0@, (i 02 1), oo 1), (002, 2),
Co (e riph e i) (e i) o)) T (@) =N Gt D1). G). G D) D
v {(W“@). D), (s 1) s), Gt)] . 2)
) =[Eo ()} =4 =|E, (v)=4

2nd variable node processing

(e 1
15 €

DOl (e 1) e)
2)

BN CRER D O]
A}

Je @ =N, (o@D ot D)2
[, @} =N (s DI () =2

[E. @ =N ({2, (o D)o () =2
[E.c @ =N (e) Gt DI () =2
[Eo @)= N (e b (i @)= 2 [() =3

E(@)N, ({02:602). (e b DI () =2
B (@) N, ({6), (s D)o (] =2
EL (@) =N, ({00 @) Gt b D120 (2] =2
B (@) N (e)G i D)), () =2

Cardinality condition is satisfied for all nodes

Fig. 1.

An example of stopping set detection method.

and F((Q§)) = {{v2}, {vs}, {va}, {vs}}. Here, we see that Note that the proposed algorithm does not guarantee that
no element inV ((Q¢)f) is contained in a three-tuple withthe detected set is the minimal stopping set. Here, the vari-
an empty flag set. Thus(QS)’ is obtained fromQS$ by able node set of the minimal stopping setlgS™™") =
removing all three-tuples whose first element iS/it(Q5)7) {v1, v2, vs,v4, vs5, V7, V9, v15 }. HOWever, since the stopping set

or third element is inF((QS5)/) according the second stepis a set of nodes, the same set is detected when the starting
of Procedure 1. Now, we see th@bS)’ = {vis,cs,c8,c9} variable node is set to different variable node in the stopping
and that|E..((Q5))| = 0 < 2, |E,((25))] =1 < 2 and set. Then, the minimal stopping set can be very often found
|Ee, ((25))] = 1 < 2. Thus, from the third step of Procedureby choosing the smallest set out of the similar stopping sets
1, (®S)” are obtained by erasings, cs and ¢y in (®§) detected with different starting variable nodes.

and(Q¢)" is obtained by erasing the corresponding aggregate
messages ifiQ25)" as V. THE OUTLINES OF LDPC CODE DESIGNALGORITHM

AND CODE DESIGN EXAMPLE
Q)" = {{(v1,c1,9), (v1,c12, D) }} (16)

One can see that the cardinality condition check(6')”
is failed since|E,,((25)")| = 2 < Eo(vi) = 4. At the
variable node update of the second iteration, the aggreg
messages at variable nodesvs, vg andwvyy are newly added

Let rs denotes the radius of the stopping setwhich is
defined as the number of the node update processing until the
stopping set is detected. This quantity is used for an LDPC
8lte design as well as the number of variable nodes in the
. ’ : -~~~ stopping setS. Since it is likely that a stopping set with
to updateQ;/. Since onlyvs fails to_ satisfy the cardinality larger radius has more nodes contained in it, the large radius
condm(_)n, the remova_l procedure s performgd as fOIIOWE beneficial for the good code design. Also, the code designed
according to the step i1 a‘n/d the cgrrespond[ng aggregat%nly by the stopping set detection often shows the degraded bit
message are removed__froimz and)z, respectively. Then, error performance in low SNR region because a large number
according to the step ii), the three FHD'@‘%’CS’{?GD and of connected small cycles constituting a large stopping set
(v, co, {%}) a‘t/re, erased. In the step i), it '5 /easny se‘;er)/ th egrades a message-passing decoding performance. Therefore,
no node in(®;) .ShOU|d be erased. Thu@Q)" and (85) a small cycle conditioning is essentially applied together with
are the same. Finally, one can easily see TH&tQ2Y)") = the stopping set detection.

i i vin
{v1, 02,3, 04,05} and all the variable nodes il ((€23)") In Fig. 2, the outlines of the code design algorithm using the
satisfy the cardinality condition. Therefore, the variable nOdperoposed detection method are summarized. H&tén) and
set of a stopping sef is determined as N.(m) are the node degrees for théh variable node and the
V(S) (17) mth constraint node, respectively. For a new variable node, a

{Ula U2, V3, V4, Us, U7, U87U97U15}

Input: N.K,L,L_,.N,(n).n=0,...N-LN, (m),m=0,.. N-K-1 10°
1: setn«0,ind « 0, R, «{0,.. .N-K -1}
2: do
3 1«0
while (/ <N,)

4
5: choose randomly N, (1) elements among the elements R. with nonzero remaining degree N, (m)
6: form N, (n)-tuple e with randomly chosen N, () elements

7: evaluate the cycle distribution £, (¢) up to 2L caused by edge configuration e

8: ifall cycles associated with /, (¢) is larger than Z,_,

9 execute the stopping set detection

10: evaluate the metric f, (¢) with the number of variable nodes [V (c)] and the radius 7 (¢)

11: if /, (¢)is better than /, (¢*)

12: update /, (¢*) < /. (). ¢* ¢ — P ((Rre:;m:;cfg)
13: endif | |-=" ACE (R=3/8,N=800)
14: endif 10 E = Pron. gj:,gﬁ:fg(%)
15: le1+1 = _ACE (R=5/8,N=800)
16: endwhile
17 for (k =0;k <N, (n)k++) H H H H H | A
18: Vindex(ind + k) < n, Clndex(ind + k) < ¢* (k). N, (¢*(€))« N, (*(k))-1 0 0 T O ettty
19: endfor

20: ind «ind+N,(n), n < n+1

215 while (1< V) Fig. 3. Simulation result for designed codes over binary erasure channel.
Output : Vindex, CIndex

Codeword error probability

Fig. 2. The outline of the proposed code design algorithm

random configuration of edges connecting that variable node
to N, (n) constraint nodes is placed in the Tanner graph being
constructed. A sufficiently large number of random edge con-
figuration is examined for a short-length cycle conditioning.

Bit error probability

~& Prop. BER (R=3/8,N=800)

We used the algorithm proposed in [4], which is very similar 10°F| - O BER (-3 v-00) i
to the equation (1), to evaluate the distribution of cycles with | E SR e v
relatively short lengths. If all cycles caused by addition of new

N,(n) edges are larger than pre-defined cycle length, stopping 0 n ; 5 ; : .

Eb/No

set detection is performed for such edge configurations. The
outputs of stopping set detection are the number of constituent Fig. 4. Simulation result for designed codes over AWGN channel.
variable nodes and the set radius. With these two values,

a metric function for a stopping set is evaluated. We used

a weighted sum of two values for the metric function. oW SNR region is similar because relatively short cycles are
new metric function is better than the currently best metronditioned for all codes, the code designed by the proposed
function, the best metric function is updated and its edggorithm has a performance improvement in the error floor
configuration is stored. After sufficiently large number of€gion.
random edge configurations, the best edge configuration is

chosen for the position of new, (n) edges. The same edge)) , :)
In this paper, a stopping set detection scheme using a belief-

placement processing is repeateq unti N i ropagation algorithm was proposed for designing an LDPC
: We used the proposed algorithm to construct a simp Bde. The proposed scheme can detect the existence of stop-
iregular codes of NV, K) = (800’.300) and (800, 500). The ing sets by using two-step belief-propagation algorithm. The
codewords were sent through binary erasure channel (BEGy) it ent nodes of the detected stopping set are recovered
and additive white Gaussian noise (AWGN) channel. Threg, ., 1o messages and their number is used for the code
kinds of LDPC codes are designed for comparison. A g'mEi'esign. The simulation results showed that the proposed LDPC

C(_)ndl_t|0ned code is des'gned by only checking Whether tEgdes outperforms conventional LDPC codes over BEC and

girth is larger than pre-defined length. The ACE [3] is a metrigyygN channels, especially in the error floor region.

for implicit stopping set conditioning method. The correspond-

ing code is designed by placing edges which maximize the REFERENCES

sum of the variable node degrees contained in cycles. M| p. 3. c. MacKay, “Good error correcting codes based on very sparse

designed codes are guaranteed to remove short cycles of lengthmatrices,"IEEE Trans. Inform. Theorwol. 45, pp. 399-431, Mar. 1999.

at least 6. Fig. 3 depicts the performance over BEC. Thg C: Di. D. Proietti, E. Telatar, T. Richardson, and R. Urbanke, “Finite
L. . . length analysis of low-density parity-check codes on the binary erasure

performance over BEC distinguishes the co_des deS|gn§d DY channel”IEEE Trans. Inform. Theoryol. 48, pp. 1570-1579, June 2002.

the proposed method from other codes designed by existidg T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction

; ; ; of irregular LDPC codes with low error floorsProc. IEEE Int. Conf.

methods because it strictly depends on the de_S|gned cheCOmm, vol. 5, pp. 31253129, Anchorage, AK, U.S.A.. May 2003,

structure. The performance over AWGN channel is plotted j# s. H. Lee, K. S. Kim, Y. H. Kim, and J. Y. Ahn, * A cycle search

Fig. 4. The sum-product algorithm is performed with iteration algorithm for an LDPC code designPRroc. Int. Symp. Inform. Theory

number of 50 for decoding. While the performance in the 2nd ApplicationsWed 2-2-5, Parma, Italy, Oct. 2004.

VI. CONCLUSION

