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Abstract

Characteristics of the 2D shape deformation in hu-
man motion contain rich information for human identifi-
cation and pose estimation. In this paper, we introduce a
framework for simultaneous gait tracking and recognition
using person-dependent global shape deformation model.
Person-dependent global shape deformations are modeled
using a nonlinear generative model with kinematic manifold
embedding and kernel mapping. The kinematic manifold is
used as a common representation of body pose dynamics in
different people in a low dimensional space. Shape style
as well as geometric transformation and body pose are es-
timated within a Bayesian framework using the generative
model of global shape deformation. Experimental results
show person-dependent synthesis of global shape deforma-
tion, gait recognition from extracted silhouettes using style
parameters, and simultaneous gait tracking and recognition
from image edges.

1 Introduction

Characteristics of the shape deformation in a person mo-
tion contain rich information such as body configuration,
person identity, gender information, and even emotional
states of the person. Gait recognition has become attrac-
tive for surveillance and for security in public areas [4, 8, 2]
as it is easily observable and difficult to disguise than other
biometrics.

Gait involves spatiotemporal deformations in shape and
appearance. Such spatiotemporal shape deformation are in-
vestigated in many appearance-based gait recognition sys-
tems [2, 14, 20, 10, 13, 22, 11]. Most of the gait recogni-
tion systems rely on silhouettes extracted using background
subtraction algorithms. Recognition performance in many
systems depends on the accuracy of extracted silhouettes.
On the other hand, there have been a lot of work on con-
tour tracking from cluttered environment, without the need

for background subtraction, such as active shape models
(ASM) [3], active contours [9], and exemplar-based track-
ing [21]. Spatiotemporal models are also used for contour
tracking [1] However, it is difficult to achieve tracking of
dynamic contour that is accurate enough to distinguish in-
dividual differences from articulated human motion. There
are no spatiotemporal models for contour tracking to de-
scribe person-specific variations of shape for gait recogni-
tion.

Our objective is to model person-specific differences of
shape deformation in addition to the global deformation of
the shape in order to achieve adaptive tracking and person
identification from gait. For certain classes of motion like
gait and facial expressions, the global shape deformation
might lie on a low dimensional manifold, if we consider a
single person. In [7], a framework to separate the motion
from the style in a generative fashion was introduced where
the motion is represented in a low dimensional nonlinear
manifold. Individual differences in the shape deformation
can be discovered in the nonlinear mapping space between
embedded representation of the configuration space and the
observation. Nonlinear manifold learning can be used to
find intrinsic body configuration space [23, 7]. However,
when applied to image sequences, nonlinear manifold learn-
ing yields manifolds that are twisted differently according
to person style, view, and other factors like clothes [6]. It
is hard to achieve unified representation from these variant
manifolds. In addition, the individual difference in shape
contour will exist not only in the nonlinear mapping space
but also in the embedding space (i.e., separation is not op-
timal). We propose to use kinematics manifold embedding,
which represents body configuration in low dimensional
space and invariant to different people, to model dynamics
of shape deformation in body configuration space. The en-
tire intrinsic configuration can have one-to-one correspon-
dence with kinematics manifolds. Using this kinematic
manifold embedding, individual difference of shape defor-
mation can be solely contained in the nonlinear mapping.
Even though the dynamics of global shape deformation are



complicated and nonlinear, we can successfully model the
dynamics by simple one dimensional linear model using
this kinematics manifold.

We develop a generative model for person-dependent dy-
namic shape contour for tracking and recognition using the
kinematics manifold. The generative model is represented
by a configuration state and a shape style state. The shape
style state is a compact representation of variations in shape
contours independent of body pose (the configuration state).
We use the estimated style for gait recognition. When the
extracted silhouette is provided (e.g. using background sub-
traction), we can directly estimate the contour style state
and recognize gait based on the estimated contour style pa-
rameters. On the other hand, if silhouette extraction is not
possible, we use contour tracking where the tracking prob-
lem is formulated as estimation of body configuration state
as well as contour style state using Bayesian framework uti-
lizing the generative model. We can recognize person gait
during tracking using particle filtering as we estimate state
of person style, global shape deformation characteristics, as
well as body configuration, which is impossible in particle
model using kinematic models without global shape defor-
mations [5]. Style estimation gradually gets discriminative
using deterministic annealing like procedure in order to es-
timate contour style state, which can be high dimensional,
robustly without trapping to local minima. Experimental
results using University of Southampton gait database [18]
shows potential for simultaneous gait recognition and con-
tour tracking.

2 Decomposable Generative Models using
Kinematics Manifold Embedding

We can think of the shape of a dynamic object as in-
stances driven from a generative model. Let zt ∈ R

d be
the shape of the object at time instance t represented as a
point in a d-dimensional space. This instance of the shape
is driven from a model in the form

zt = Tαt γ(bt ;st), (1)

where the γ(·) is a nonlinear mapping function that maps
from a representation of the body configuration bt into the
observation space given a mapping parameter st that charac-
terizes the person shape in a way independent from the con-
figuration and specific to the person being tracked. Tαt rep-
resents a geometric transformation on the shape instance.
Given this generative model, we can fully describe obser-
vation instance zt by state parameters αt ,bt , and st . Fig-
ure 1 shows a graphical model illustrating the relation be-
tween these variables where yt is a contour instance gen-
erated from model given body configuration bt and shape
style st . The observed shape contour zt is formed by geo-
metrically transforming the contour instance yt in the image

st−1

bt−1

yt−1

αt−1

st

bt

yt

αt

zt−1 zt

Figure 1. A graphical model for decompos-
able generative models
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Figure 2. Kinematics manifold embedding
and its mean manifold: two different views in
3D space

space. Kinematics manifold embedding is used for intrinsic
manifold representation of configuration bt .

2.1 Kinematics Manifold Embedding

We find low dimensional representation of kinematics
manifold by applying nonlinear dimensionality reduction
techniques for motion capture data. We first convert joint
angles of motion capture data into joint locations in 3 di-
mensional spaces. We aligned global transformation in ad-
vance in order to count motion only due to body configu-
ration change. In order to find low dimensional intrinsic
representation from the high dimensional data (collection of
joint location) we applied nonlinear dimensionality reduc-
tion procedure like Locally linear embedding (LLE) [16].
Figure 2 shows kinematics manifold based on three walking
cycles of motion capture data and their mean manifold rep-
resentation. The manifold is one-dimensional twisted cir-
cular manifold in three-dimensional spaces.

The manifold is represented using a one-dimensional pa-
rameter by spline fitting. For one-dimensional representa-
tion of the multiple cycles, we use mean-manifold represen-
tation in the parameterization. The mean-manifold is pa-
rameterized by spline fitting by a one-dimensional parame-



ter βt ∈R and a spline fitting function f : R→R
3 that satis-

fies bt = f (βt ) is used to map from the parameter space into
the three dimensional embedding space as shown in Fig.2.

2.2 Decomposing and Modeling Shape
Style Space

Individual variations of the shape deformation can be
discovered in the nonlinear mapping space between the
kinematic manifold embedding and the observation for dif-
ferent people. We employ nonlinear mapping based on em-
pirical kernel map [17] to capture nonlinear deformation in
difference body pose. There are three steps to model indi-
vidual shape deformations using nonlinear mapping. First,
for a given shape deformation sequence, we detect gait cy-
cles and embed collected shape deformation data to the in-
trinsic manifold. In our case, kinematic manifold are used
for gait embedding in each detected cycle. As the kine-
matic manifold comes from constant speed walking motion
captured data, we can embed the shape sequence in equally
spaced points along the manifold. Second, we learn nonlin-
ear mapping between the kinematic embedding space and
shape sequences using Generalized Radial Basis Function
(GRBF) [15] similar to [7]. The mapping has the form
yk

t = γk(bt) = Ck ·ψ(bt), where Ck is the mapping coeffi-
cients which depend on particular person shapes, ψ(·) is a
nonlinear mapping with N RBF kernel functions to model
the manifold in the embedding space, yk

t is person k shape
at time t, and bt is a corresponding point on the kinematic
manifold. Third, given learned nonlinear mapping coeffi-
cients C1,C2, · · · ,CK , for training people 1, · · · ,K, the shape
style parameters are decomposed by fitting an asymmetric
bilinear [19] to the coefficient space:

ck = Ask, (2)

where ck is a vector representation of matrix Ck using col-
umn stacking. As a result, we can generate contour instance
yk

t for particular person k at any body configuration bt as

yk
t = A × sk ×ψ(bt), (3)

where A is a third order tensor, sk is a shape style vector
for person k. The style matrix, collection of style vectors,
S = [s1s2 · · ·sk]T, is orthonormal matrix as a result of asym-
metric bilinear model analysis.

For a given cycle of walking sequence, we can estimate
style vector analytically. We can find mapping coefficients
Cnew for the given new sequence based on kinematics em-
bedding and nonlinear mapping described above. Using
Eq. 2, we can find style representation in closed-form for
new sequence snew = A+cnew, where cnew is vector repre-
sentation of matrix Cnew and A+ is pseudo inverse of the
matrix A. Using this closed form solution, we can perform

gait recognition from extracted silhouette shape sequences
as will be shown in Sec. 4.2.

Ultimately the style parameter s should be independent
of the configuration and therefore should be time invariant
and can be estimated at initialization. However, we don’t
know accurate shape and body configuration initially and
we cannot estimate correct shape style at the beginning.
Therefore, the style needs to fit to the correct person style
gradually during the tracking. So, we formulated shape
style as time variant factor that should be stabilized as more
observations become available. The dimension of the style
vector depends on the number of people (or number of cy-
cles) used for training and can be high dimensional. We
pursue lower dimensional representation and impose con-
straints as explained in Sec. 3.2. The overall generative
model can be expressed as

zt = Tα t (A × st ×ψ(bt)) . (4)

The tracking problem using this generative model is the es-
timation of parameter α t , bt , and st at each new frame given
observations Zt .

3 Bayesian Tracking and Style Estimation

Given the nonlinear shape generative model introduced
above, the tracking problem is an inference problem where
at time t we need to infer the body configuration bt and the
shape style st and the geometric transformation Tα t given
the observation Zt . The Bayesian tracking framework en-
ables a recursive update of the posterior P(Xt |Zt) over the
object state Xt given all observations Zt = Z1,Z2, ..,Zt up to
time t:

P(Xt |Zt) ∝ P(Zt |Xt)
∫

Xt−1

P(Xt |Xt−1)P(Xt−1|Zt−1) (5)

In our generative model, the state Xt is (αt ,bt ,st), which
uniquely describes the state of the tracked object. Observa-
tion Zt is the captured image instance at time t.

3.1 Particle Filter with Decomposable
Models

The state Xt is decomposed into three sub-states
αt ,bt ,st . These three random variables are conceptually in-
dependent since we can combine any body configuration
with any shape style with any geometrical transformation
to synthesize a new shape. However, they are dependent
given the observation Zt . It is hard to estimate joint poste-
rior distribution P(α t ,bt ,st |Zt) for its high dimensionality.
The objective of the density estimation is to estimate most
likely states α t ,bt ,st for given observations. The decom-
posable feature of our generative model enables us to esti-
mate each state by a marginal density distribution P(α t |Zt),
P(bt |Zt), and P(st |Zt).



We approximate the marginal density of each sub-state
using maximum a posteriori (MAP) of the other sub-states,
i.e.,

P(αt |Zt) ∝ P(αt |bt
∗,st

∗,Zt), P(bt |Zt) ∝ P(bt |αt
∗,st

∗,Zt),

where α t
∗, bt

∗, and st
∗ are maximum a posteriori estimate

of each approximated marginal density.
We represent state densities using particle filters since

such densities can be non-Gaussian and the observation is
nonlinear. We can represent three dimensional body config-
uration parameters bt as a one-dimensional parameter βt as
explained in Sec. 2.1. The shape style is also parameterized
by style class weighting parameters λ t as in Sec. 3.2. In
case of global transformation, we estimate geometric trans-
formation parameters αt in the image space. So, using the
generative model in Eq. 4, the tracking problem is to esti-
mate α t , λ t , and βt for given observations Zt . The marginal-
ized posterior densities for α t , βt , and λ t are approximated
by three particle systems.

{α(i)
t ,α π (i)

t }Nα
i=1,{β ( j)

t ,bπ ( j)
t }Nb

j=1,{λ (k)
t , sπ (k)

t }Ns
k=1, (6)

where Nα ,Nb, and Ns are particle numbers used for each
sub-states.

3.2 Style Estimation with Constraints and
Annealing Procedure

There are two factors to be considered in the shape style
estimation: One is high dimensionality in the style rep-
resentation and the other is discriminative power for gait
recognition. The decomposition of style vector from the
collection of mapping coefficient using bilinear model gives
style vector whose dimension is the same as the number of
cycle used for the training. We need to keep the high dimen-
sional terms to get accurate synthesis of shape deformation
as shown in Fig. 3 (b). We estimate style using deterministic
annealing procedure with additional constraints in the parti-
cle sampling to achieve gradually discriminative estimation
of high dimensional shape style vector.

First, we represent a new shape style as a linear com-
bination of shape style classes within convex hull of given
style classes. A new style vector snew is represented by lin-
ear weighting of each of the style classes sk, k = 1, · · · ,K
using linear weight λ k with constraints:

snew =
K

∑
k=1

λ ksk ,
K

∑
i=1

λ (k)
i = 1, λ (k)

i ≥ 01 for all k (7)

where K is the number of representative style classes. In
actual style estimation using particle filtering, we force the

1In actual implementation, we allow small extrapolation in sampled
particles for fast convergence of mean particle weights to the target style

negative λ (k)
i to be zero after important-sampling with re-

sampling for the style particles. We normalize again for
this modified particle values according to Eq. 7. In actual
style estimation, these constraints help not to diverge into
unusual dynamic shape deformation.

Second, the style estimation needs to become more dis-
criminative as tracking progresses. If we try to be discrim-
inative from the beginning and select a specific style for
gait recognition, the estimated style inclines to be trapped
in local minima. Therefore, we start from the mean style,
which is the style with uniform weights for all the represen-
tative shape style classes. When additional frames become
available, the estimated style vector can gradually be more
discriminative since weighting particles become more sen-
sitive to observations.

To achieve this progressive discrimination, we use a
deterministic annealing like procedure: estimated style
weights are forced to be close to uniform weights at the
beginning to avoid hard decisions about style classes and
gradually become discriminative thereafter. We assume the
style distribution given observation Zt , global transforma-
tion Tα∗

t
and body configuration b∗t , can be approximated

by a Gaussian distribution.

sφ (k)
t ∝ P(Zt |α∗

t ,b
∗
t ,s

(k)
t ) ∝ exp

(
−d(Zt ,z

(k)
t )2

Σ2
t

)

= exp

(
−d(Zt ,Tα∗

t
A × s(k)

t ×ψ(b∗t ))2

Σ2
t

)
,

where d(·) is distance measure, z(k)
t is the contour from the

generative model using α∗
t ,b

∗
t ,s

(k)
t . For geometric transfor-

mation estimation, we use weighted Chamfer distance as
distance measure to give more weight to upper body part.
For body pose estimation, we use oriented Chamfer distance
measure to be more sensitive to leg orientation. When the

variance Σ2
t is very big (Σ2

t >> d(Zt ,zt)2), the weight sφ (k)
t

will be assigned similar value regardless to d(·). When the
variance is small (Σ2 < d(Zt ,zt)2), the likelihood is sensitive
to the distance value and corresponding weights in the parti-
cle update will be discriminative. To achieve annealing-like
procedure, we use style class variances, which are uniform
to all classes and are defined by Σs = Tsσ2

s I + λ I respec-
tively as time variant parameters. The parameters Ts start
with large values at the first frame and are gradually reduced
and in each step and a new body configuration estimate is
computed.

3.3 Tracking Algorithm

We perform tracking of gait style by sequential update
of the marginalized sub-densities utilizing the predicted
densities of the other sub-states. These densities are



updated with current observation Zt by updating weighting
values of each sub-state particle approximations given
observations. We estimate global transformation αt using
predicted density ŝ∗t , b̂

∗
t . Then body configuration bt is

estimated using estimate global transformation α∗
t , and

predicted style density ŝ∗t . Finally style st is estimated
with given estimation α∗

t , and b∗t . The following table
summarizes the state estimation procedure using time t −1
estimation.

1. Importance-sampling with re-sampling at t − 1:
For given t − 1 state density estimation: {α(i)

t−1,
α π (i)

t−1}Nα
i=1,

{β ( j)
t−1,

bπ ( j)
t−1}Nb

j=1, {λ (k)
t−1,

sπ (k)
t−1}Ns

k=1.

Re-sampling: {ὰ(i)
t−1,1/Nα}, {β̀ ( j)

t−1,1/Nb}, and

{λ̀ (k)
t−1,1/Ns}.

2. Predict current state densities using dynamic models:
α(i)

t = Hὰ(i)
t−1 + N(0,σ2

α)

β ( j)
t = β̀ ( j)

t−1 + ṽt + N(0,σb
2), b( j)

t = f (β ( j)
t )

λ (k)
t = λ̀ (k)

t−1 + N(0,σs
2
t−1), λ (k)

t = λ (k)
t

∑Ns
i=1 λ (k)

i t

,

3. Force style particle to satisfy constraints of Eq. 7:

If λ (k)
i ≤ 0 then, λ (k)

i = 0 for all i,k , λ (k)
t = λ (k)

t

∑Ns
i=1 λ (k)

i t

,.

4. Sequential update of state weights using current ob-
servation:
Global transformation αt with b̂t , ŝt :

P(α(i)
t |b̂∗t , ŝ∗t ,Zt) ∝ P(Zt |α(i)

t , b̂∗t , ŝ∗t )P(α(i)
t )

α π (i)
t = P(Zt |α(i)

t , b̂∗t , ŝ∗t ), α π (i)
t =

α π(i)
t

∑Nα
j=1

α π( j)
t

Body pose bt with αt , ŝt :
α∗

t = α(i∗)
t , where i∗ = argmaxi

α π (i)
t

P(b( j)
t |α∗

t , ŝ∗t ,Zt) ∝ P(Zt |α∗
t ,b( j)

t , ŝ∗t )P(b( j)
t )

bπ ( j)
t = P(Zt |α∗

t ,b( j)
t , ŝ∗t ), bπ ( j)

t =
bπ( j)

t

∑
Nb
i=1

bπ(i)
t

Style st with αt , bt:
b∗t = b( j∗)

t , where j∗ = argmax j
bπ ( j)

t

P(s(k)
t |α∗

t ,b∗t ,Zt ) ∝ P(Zt |α∗
t ,b∗t ,s

(k)
t )P(s(k)

t )
sπ (k)

t = P(Zt |α∗
t ,b∗t ,s

(k)
t ), sπ (k)

t =
sπ(k)

t

∑Ns
i=1

sπ(i)
t

5. Reducing style variance:

4 Experimental Results

We demonstrate the performance of the proposed
algorithms on University of Southampton (UoS) gait
database [18]. The database provides well-extracted sil-
houette images under controlled environments for walking
sequence of more than 100 people. We used provided sil-
houette sequences to learn our nonlinear generative model
in Sec. 2. We collected 10 subjects to learn the global
shape deformations dependent on individual style and em-
beddings. Four cycles from each person are used to learn

the style variations in each person. Total 40 cycles are used
to learn the generative model (Ns = 40) after kinematics
manifold embedding.
Representation: We represent shape by an implicit func-
tion similar to [6] where the contour is the zero level of
such function. From each frame, we extracted edge using
Canny edge detector algorithm.

4.1 Synthesis of New Dynamic Shapes

We tested the performance of synthesis of shape defor-
mation according to shape style vector in our nonlinear gen-
erative model by changing style parameter and its dimen-
sion. Fig. 3 (a) shows collected original sequence of three
different people. When we use reduced number of style ba-
sis, we lost details of the person. However, we still be able
to generate sequences showing body pose change even with
one basis as shown in the first row of Fig. 3 (b). When we
used corresponding person style vectors with full dimen-
sion, the new sequence preserves detail difference of indi-
vidual shape deformation. Fig. 3 (c) shows linear interpola-
tion of style vector and corresponding shape interpolation.
This capability allows tracking of new person adaptively as
shown in the following experiments.

4.2 Gait Recognition Using Shape Style

We tested the performance of gait recognition in two sit-
uations. First, we perform gait recognition during track-
ing using edge information without any background sub-
traction. Gait recognition is performed by selecting highest
weights in estimated style weights represented by particles.
We tested the gait recognition performance for indoor se-
quences. The indoor sequences have relatively simple back-
ground. However, when we use just edge information, it is
not easy to estimate the whole shape and identify the person
as it has many missed edge in the corresponding contours
and additional edge inside desired contour, which causes
confusion in the estimation of shape using edge-based dis-
tance transformation (DT). Fig. 4 shows change of style
weights for two people gait sequences. Both of the case,
the weights begin from equal weights and gradually fit to
one of shape. In case of person 2, the person style get dom-
inant quickly. In the case of person 4, the correct person
style fails to find correct style when the geometric trans-
formation misaligned contours around 30th frame. Table 1
shows gait recognition results from each person sequence.
We did not count style weights of the initial 10 frames as
style weights are not reliable at the beginning.

Second, we tested the gait recognition when extracted
silhouette sequences are given. We selected 4 cycles from
37 people and learn the generative model. In this case,
the style dimension becomes 148 (37× 4) dimension. We



Table 1. Gait recognition confusion matrix
Person Id P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 1(3.3%) 0 25 (83.3%) 0 3(10%) 1(3.3%) 0 0 0 0
P2 0 30(100%) 0 0 0 0 0 0 0 0
P3 0 0 30(100%) 0 0 0 0 0 0 0
P4 0 0 0 23(76.7%) 0 3(10%) 0 2(6.7%) 0 2(6.7%)
P5 0 0 0 1(3.3%) 28(93.3%) 0 0 1(3.3%) 0 0
P6 1(3.3%) 1(3.3%) 14(46.7%) 0 0 0 3(10%) 0 0 0
P7 0 0 0 0 0 0 24(80.0%) 5(16.7%) 0 1(3.3%)
P8 0 0 1(3.3%) 0 0 0 1(3.3%) 28(93.3%) 0 0
P9 1(3.3%) 0 25(83.3%) 0 0 0 1(3.3%) 2(6.7%) 0 1(3.3%)
P10 0 0 11(36.7%) 0 0 0 1(3.3%) 3(10%) 0 15(50%)

(a) Original silhouettes (b) Synthesis in different style dimension (c) Style combined synthesis

Figure 3. Style dependent dynamic shape synthesis: (a) Row 1: P1, Row 2: P2, Row 3: P3 original
silhouette, (b) Synthesis of P1 silhouettes using Row 1: 1 style basis, Row 2: 25% style basis, Row
3: full style basis, (c) Synthesis by style combination: Row 1: 0.5P1+0.5P2, Row 2: 0.5P1+0.5P3,
Row 3: combinations of all style vectors equally (mean style vector)

collected another 3 cycles which are not used for model
learning from the same database and estimated style vec-
tor in closed form using pseudo inverse as explained in
Sec. 2.2. For each estimated 148 dimensional vector, we
compute similarity by inner product S · sest , which gives co-
sine value of two vector since the style basis are orthono-
mal. We classified gait by maximum similarity value and
we get 83.8% recognition rate from 37 subjects by recog-
nizing 93 sequence correctly at rank 1 among 111 (3×37)
sequences. Further experiment shows cumulative matching
characteristics(CMC) as in Fig. 5.
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Figure 5. Performance of gait recognition us-
ing style vector

5 Conclusions

We presented a gait tracking and recognition system us-
ing nonlinear generative model for person-dependent con-
tour deformation. Using kinematic manifold representation,
we can perform tracking body pose on a one-dimensional
manifold. By representing variations in spatiotemporal con-
tour deformation among different people using style vec-
tors, we can achieve person identification using gait si-
multaneously with person-adaptive contour tracking. For
accurate estimation of high dimensional style vector, we
added constraints in the shape style particles and employed
annealing-like gradual increase of discrimination.

We performed gait recognition with simple similar-
ity measurement and relatively small dataset that showed
promising results. More advanced classification algorithms
can be performed using style vectors as feature vectors. Ex-
periments with larger date set of subject and outdoor se-
quences will be performed in the future. In case of view
variant situation, we may be able to extend current biliear
decomposition of mapping into multilinear model with view
factor in addition to style factor. We may be able to achieve
similar result using conceptual manifold embedding [12] in-
stead of kinematic manifold embedding.
Acknowledgement This research is partially funded by
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