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Abstract. We propose motion manifold learning and motion primitive segmen-
tation framework for human motion synthesis from motion-captured data. High
dimensional motion capture date are represented using a low dimensional repre-
sentation by topology preserving network, which maps similar motion instances
to the neighborhood points on the low dimensional motion manifold. Nonlin-
ear manifold learning between a low dimensional manifold representation and
high dimensional motion data provides a generative model to synthesize new
motion sequence by controlling trajectory on the low dimensional motion mani-
fold. We segment motion primitives by analyzing low dimensional representation
of body poses through motion from motion captured data. Clustering techniques
like k-means algorithms are used to find motion primitives after dimensionality
reduction. Motion dynamics in training sequences can be described by transition
characteristics of motion primitives. The transition matrix represents the tempo-
ral dynamics of the motion with Markovian assumption. We can generate new
motion sequences by perturbing the temporal dynamics.

1 Introductions

In this paper, we present a framework to synthesize human motion by combining mo-
tion primitives. Biological study shows that complicated human motions are controlled
by linear combination of computational motion primitives called force fields [10]. We
learn a generative model with a low dimensional motion manifold representation simi-
lar to force fields of motion primitives. To model smooth variations in human motions
according to force fields, we learn nonlinear mapping between motion manifold repre-
sentation and high dimensional motion data. We also model continuous human motion
dynamics by sequences of primitive motions.

A low dimensional manifold representation of high dimensional human motion data
provides a compact representation for analysis of human motion sequences. It also pro-
vides means to control human motion in the low dimensional space after learning a
mapping between the low dimensional manifold points and high dimensional motion
capture data. We use self organizing maps (SOMs) as a topology preserving network.
Using SOMs, we can represent high dimensional human motion data into low dimen-
sional Euclidean space preserving neighborhood relationship. By learning nonlinear
mappings between low dimensional manifold points and high dimensional motion cap-
ture data, we can generate new motion sequences according to trajectories on the low
dimensional motion manifold.
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We segment a given sequence of motion into sub-motion primitive by utilizing low
dimensional representation of human motion sequence and clustering in the low di-
mensional space. There are several works related to macro-level motion segmentation,
where the motion is segmented into higher level meaningful categories like walk, run,
jump and so on. However, we need to find micro-level motion patterns in order to de-
scribe simple motion by the combination of the sub-motions. It is not obvious how
to define the sub-motion. Recently, huge motion capture data are available in public.
Therefore, we find sub-motion primitives by analyzing large motion capture data set.
Dimensionality reduction techniques are applied followed by applying clustering to find
sub-motion primitive in order to represent intrinsic characteristics of motion efficiently.

To model temporal dynamics of a given motion sequence and to be able to generate
new motion sequences that fit to the original motion dynamics, we model motion dy-
namics by the transition characteristics of sub-motion primitive. Motion dynamics can
be captured using transition probabilities from one primitive motion to another primitive
transition after segmenting whole sequence of motion into sub-motion primitives. With
Markovian assumption, we model the motion dynamics characteristics in a transition
matrix of motion primitives.

2 Related Work

Machine-learning techniques are used in increasing number of papers in computer
graphics, especially in data-driven motion synthesis. A stylistic hidden Markov model
(SHMM), which is an HMM whose parameters are functionally controlled by a style
parameter, was used for stylistic motion synthesis [4]. Scaled Gaussian Process Latent
Variable Model (SGPLVM) was used to solve inverse kinematics system based on a
learned model [8]].

There are several different approaches to segment continuous motion sequences.
One of the well-known approaches in computer vision is using hidden Markov model
(HMM) [5]. Statistical approaches like Principal Component Analysis (PCA), Proba-
bilistic PCA and Gaussian mixture model (GMM)), are used to segment motion capture
data into distinct behavior segment [1]]. Recently there are approaches to use sub-motion
sequences for segmentation. Bettinger and Cootes [2] modeled facial motion by seg-
menting sub-trajectories, grouping similar sub-trajectories and learning temporal rela-
tions between groups in order to model facial behavior. Temporal relationship between
groups was modeled by variable length Markov model [7]. New sequence can be gener-
ated by transition of group from the learned model and sampling principal component
in subgroup to find new shape of motion. For the interpolation of two sub-motion, linear
model is used to avoid perceptible jumps in the generated video. Clustering techniques
are also used to find key-frame in motion analysis [3]].

In this paper, we employed also clustering technique similar to [3] to discover motion
primitive. However, we use low dimensional motion manifold for the representation
of dynamic human motion in low dimensional space, which allows low dimensional
representation of high dimensional data. In addition, we learn a nonlinear generative
model to synthesize details of the original motions in spite of the low dimensional
representation.
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3 Learning Low Dimensional Motion Manifold

We represent high dimensional human motion using a low dimensional embedded man-
ifold representation. Then, We learn nonlinear mapping between the low dimensional
manifold representation and the original high dimensional motion. The low dimensional
manifold representation is motivated by force fields in the biological study of human
motion [10]. The motion primitives that we are interested in are relevant to the intrinsic
body configuration and irrelevant to the position and orientation of the body. In the pre-
processing, we normalize body location and orientation. Now, we can represent body
configuration by 3D locations of body joint instead of joint angles. This allows coor-
dinate invariant similarity measure for body pose [9], which may be close to human
perception. If we use joint angle, we need to count hierarchy of joint angle in compar-
ison as the small difference of joint angle in higher level can cause large difference of
joint location than the same amount of difference in lower level joint angle. Two mo-
tion capture datasets are used in the experiments. One is ballet motion and the other is
normal walking motion.

3.1 Low-Dimensional Manifold Representation of Human Motion

We applied two manifold learning techniques for motion captured data to find low di-
mensional manifold representation of motion sequences. First, we find low dimensional
representation of each body pose by applying Principal Component Analysis (PCA) us-
ing singular value decomposition (SVD). With the first few PCs, we can distinguish
each frames with similarity relations.

Second, we applied Kohonen’s self organizing map. Kohonen’s neural network
model was motivated by neurophysiology. The neuron layer acts as a topographic fea-
ture map, if the location of the most strongly excited neurons is correlated in a regular
and continuous fashion with a restricted number of signal features of interest. Neighbor-
ing excited locations in the layer then correspond to stimuli with similar features [13].
Figure[Ilshows two dimensional representation for walking sequence and ballet motion
sequence. We can notice that the representation points spread in all the space ( Figure[Tl
(b)). In Figure [1] (a), We can notice three cycling patterns through the path. However,
in SOM, even the similar motion cycles are represented in different locations and are
spread in the space. You can see similar patterns in Figure [ (c) (d), which is the case
of complicated ballet motion.
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Fig. 1. SOM analysis for simple walking (a) (b) and complicated ballet motion (c) (d)
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3.2 Learning Generative Models Using Motion Manifold

We learn nonlinear mapping between the manifold embedding and original motion in
order to generate new motions based on embedded manifold points. Suppose that we
can learn a nonlinearly embedded representation of the high dimensional motion man-
ifold M in a low dimensional Euclidean embedding space, R, then we can learn a set
of mapping functions from the embedding space into the input space, i.e., functions
y(z¢) : R® — R? that maps from embedding space with dimensionality e into the
input space (observation) with dimensionality d. Since the embedding and the original
data are related by nonlinear manifold learning, we need to learn nonlinear mapping in
order to capture motion characteristics accurately. In particular we consider nonlinear
mapping functions of the form

yr = y(x) = B -1p(x4) (D

where Bisad x N linear mapping and ¢(-) : R® — R" is a nonlinear mapping where
N radial basis functions can be used to model the manifold in the embedding space, i.e.,

() =[1(), - on ()"

For ¢-th frame y;, which is sampled data of y; at time ¢t = i - %, we can find
low dimensional embedding point X;. Given an embedded manifold representation
z;,t = 1--- N in e dimensional embedding space for y;,i = 1--- N, we can learn
nonlinear mappings f : R® — R using generalized radial basis function (GRBF) in-
terpolation [[12] to the original sequence ¥, by solving for multiple interpolants, i.e., f' :
R® — R for each tracking feature /. We can use thin-plate spline (¢(u) = u?log(u))
or Gaussian (¢(u) = exp(u)) as the basis function. The whole mapping for sequence
k can be written in a matrix form as

fr(z) = B* -4 (x) )

where B is a coefficient for the generative model of motion data.

4 Motion Primitive Segmentation and Motion Dynamics Modeling

We segment primitive motions from the low dimensional manifold representation. Based
on segmented motion primitive, we can model dynamics of human motion by transition
probability of motion primitives.

4.1 Finding Primitive Motion Using Clustering

The representative motion primitive is estimated by clustering of the low dimensional
representation of motion sequence. At first, we applied standard k-means algorithm and
measured error in a given k clusters. We estimate the natural number of primitive by
estimating error in different number of clusters and finding elbow in the error graph for
different number of clusters. Based on the reconstruction error according to the number
of cluster, we can decide the number of clusters. In our data set, we find that the ballet
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(a) ballet dataset: (b) motion primitive(ballet):
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Fig. 2. Clustering motion sequences

motion shows 15 clusters and the walking sequence shows 10 clusters in the estimation
of natural number of clusters. After finding natural number of cluster, we applied fuzzy
k-means algorithm and Gaussian mixture model clustering using estimated natural clus-
ter number. Fuzzy k-means clustering result shows better clustering result with respect
to the inner distance within cluster and separation between clusters. Figure 2] shows
clustering result by fuzzy k-means algorithms for ballet motion with 10 clusters (a).
Figure [2] (b) shows body poses corresponding to the centers of the first seven clusters
in ballet motion dataset. In order to find proper sequence of each cluster for continuous
motion generation, we need to model dynamics of the motions.

4.2 Modeling Temporal Dynamics Using Markov Chains

Temporal dynamics of the motions are modeled using Markov chains. A Markov as-
sumption assumes that the next state of a system (S;.1) is only dependent on the previ-
ous n states (S, S¢—1, St—2, -, St—n+1). By assuming that transition to new motion
primitive (new state) depends only on current motion primitive class (current state),
we modeled motion dynamics as a first order Markov model. Now, the likelihood of
one primitive cluster following another can be expressed as a conditional probability
P(S;41|St). Transition probability from state j at time ¢ to state k at time ¢ + 1

prj = P(C/TCY), 3)

where P(C’Jt») denotes the unconditional probability of being in cluster j at time ¢, can
be estimated easily by counting two adjacent frames cluster transition in the original
data set.

A transition matrix can model the whole dynamics

P11 - Pin
: 4)

)

Pn,1 " Pnn

where >, pi; = 1 for all j, and n is the number of clusters in the model. Figure
shows transition matrices for ballet (a) and walking (b) datasets. The bright color means
high probability of transition. The figure show highest probability in the diagonal, which
means most likely next frame is within the same cluster. We can estimate most likely
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Fig. 3. Transition matrices and transition of motion states

next primitive motion cluster k* by choosing the next highest probabilistic transition
from cluster j.

k* = arg maxp; j, i # j (5)

in the transition matrix. Figure[3 (c) shows motion transition sequence estimated by the
most second likely transition state from one selected primitive motion until it return
back to the state. We can get new motion transition sequence by perturbing transition
matrix with small noise as shown figure 3] (d).

5 Synthesis of Human Motion Using Motion Manifold and Motion
Primitive

We can synthesize a new motion sequence in two ways. First, we can directly synthe-
size new motion sequence from any low dimensional trajectory since we can generate
motion sequences for any given manifold points given the learned nonlinear generative
model. Second, we can generate dynamic sequences of motion based on the transition
model which is learned from training sequence.

5.1 Direct Motion Synthesis Using Low Dimensional Motion Manifold

We implemented low dimensional representation of ballet motion using SOM. First we
learn SOM by 65 x 65 lattice structure (Actually, we tried smaller number of lattice
such as 25 x 25, 40 x 40 or 50 x 50. In these case, some motion fired in the same lattice
location, which is not good for learning as the same low dimensional representation
point requires learning to reconstruct two different high dimensional data). After finding
different lattice representation, we used small number of regular lattice center as the
basis center for radial basis function. We used 15 x 15 number of radial bases for GRBF
learning. After that we implemented two kinds of interaction methods: manifold point
based synthesis and given key motion based synthesis.
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(a) (b (©) (d

Fig. 4. Motion synthesis: (a) (b) Point interaction in low dimensional space (c) (d) Path interpo-
lation in low dimensional space

In the manifold point-based approach, user selects points on the manifold using
mouse. After finding the location of the mouse click point within the given manifold,
we can generate motion based on trajectory of selected points. Figure @l (a) (b) shows
last selected point (blue) and newly selected point (red) and their corresponding re-
constructed motion. It shows continuous variation of the motion when we interpolate
points on the manifold and generate intermediate motion corresponding to intermediate
manifold points. When multiple points are selected, we do spline fitting for the selected
manifold points for smooth interpolation of intermediate motion. Figure[(c) (d) shows
examples of the interpolating intermediate motion. Blue color motion is the motion
corresponding to the last mouse click. Red color represent new mouse click location.
Intermediate motions are generated as shown in the figure (cyan color).

The other method is based on given key motions. Using inverse mapping, we can
find a low dimensional representation for a given new key motion. In the case of SOM,
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Fig. 5. Path interpolation in low dimensional space
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we can find low dimensional manifold representation for given motion frame by finding
Best Matching Unit (BMU) in the original lattice and scale it to the mapping coordinate
space. In other case, we can achieve approximate solution using polynomial terms of
GRBF [12].

Figure 3] shows an example of motion synthesis based on given key motions. In the
left column, three selected key motions are given. The seletect key motions are the mo-
tion we want to generate; we want to generate motion begins from the first motion and
then generate second motion in the intermediate frame. Finally the animation needs to
be finished in the third key motion. In the right column, we shows low dimensional
manifold points and corresponding motion generated. Red markers on the motion man-
ifold represent low dimensional location of the three sample key motions. After spline
fitting, we re-sampled the spline curve for a given sample number. As we follow map-
ping trajectory in the low dimensional space, it shows not just interpolation of three
sample points but smooth synthesis of intermediate motions based on training data. The
figure shows that there are additional intermediate sub-motions in the synthesis of new
motions based on given key motions.

(a) interpolation trajectory: (b) cluster membership:
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Fig. 6. An example of motion primitive interpolation
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5.2 Generation of Continuous Motion Sequence

We can generate new motion sequence for any given initial motion frame with dynam-
ics of original motion. After finding transition sequence for given motion frame, we can
define trajectory on the motion manifold by connecting sequence of motion manifold
points corresponding to the given motion primitives. The deviation from the original
motion sequence can be controlled by the scale factor in the perturbation of transition
matrix by superimpose random noise all the transition matrix elements. We find smooth
trajectory from the motion primitive sequence by spline fitting of cluster center of each
corresponding motion primitives. By sampling points on the manifold points along the
spline, we can generate new sequence of motions. Figure [f] shows a generated motion
sequence with spline interpolation trajectory and clustering membership in each sam-
pling point along the interpolation trajectory. Possible transition sequence was found
from transition matrix and 80 points are resampled after spline fitting to the primitive
centers. It shows smooth motion transitions in frame 1,5,9,13, - -- | 77. For any given
initial pose, we can generate most feasible primitive pose sequence from transition ma-
trix with no perturbation. Figure [/l shows most likely key pose sequence when we start
from two different motion frame.
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Fig. 7. Generations of following motion for given initial motion frames

6 Conclusions and Future Works

We presented an approach to generate new motion sequences using statistical analysis
and learning techniques. This approach is more flexible and close to human motion gen-
eration mechanism as it generates sequence of motion based on motion primitive and
transition probabilities among motion primitives. Motion primitives found by clustering
of given data set is somewhat dependant on the given data set and the number of clus-
ters, even though we find natural number of cluster for the given data set, which may
compensate for the dependence of motion primitive to the given data set. However, this



Human Motion Synthesis by Motion Manifold Learning 473

motion primitives can summarize whole motion sequence with small motion primitives
and it simplifies representation and transition model and makes the problem solvable
with simple model. The framework presented in this paper can be applicable in motion
analysis in computer vision problem. It will be elegant to combine video data with mo-
tion capture data: tracking and recognizing human motion from video sequences with
possible motion sequence representation from motion capture data.

For more complicated and general motion primitives, we may need to count hierar-
chical representation of motion primitive as in [11]]. Modeling transition of sub-motion
is simplified assuming the first-order Markovian dynamics, which may not enough to
capture complicated motion transitions. We may use more rich representation like vari-
able length Markov model [7] or higher order Markov models. We can extend the gen-
erative models to cover variations in different person as style factors similar to [6].
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