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Abstract
Synthesis and re-targeting of facial expressions is central to facial animation and often involves significant manual
work in order to achieve realistic expressions, due to the difficulty of capturing high quality dynamic expression
data. In this paper we address fundamental issues regarding the use of high quality dense 3-D data samples un-
dergoing motions at video speeds, e.g. human facial expressions. In order to utilize such data for motion analysis
and re-targeting, correspondences must be established between data in different frames of the same faces as well
as between different faces. We present a data driven approach that consists of four parts: 1) High speed, high
accuracy capture of moving faces without the use of markers, 2) Very precise tracking of facial motion using a
multi-resolution deformable mesh, 3) A unified low dimensional mapping of dynamic facial motion that can sep-
arate expression style, and 4) Synthesis of novel expressions as a combination of expression styles. The accuracy
and resolution of our method allows us to capture and track subtle expression details. The low dimensional repre-
sentation of motion data in a unified embedding for all the subjects in the database allows for learning the most
discriminating characteristics of each individual’s expressions as that person’s “expression style”. Thus new ex-
pressions can be synthesized, either as dynamic morphing between individuals, or as expression transfer from a
source face to a target face, as demonstrated in a series of experiments.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation; I.3.5 [Com-
puter Graphics]: Curve, surface, solid, and object representations; I.3.3 [Computer Graphics]: Digitizing and
scanning; I.2.10 [Artificial intelligence]: Motion ; I.2.10 [Artificial intelligence]: Representations, data structures,
and transforms; I.2.10 [Artificial intelligence]: Shape; I.2.6 [Artificial intelligence]: Concept learning

1.. Introduction
Synthesis and re-targeting of facial expressions is central to
facial animation and often involves significant manual work
in order to achieve realistic expressions, due to the difficulty
of capturing high quality expression data. Recent progress
in dynamic 3-D scanning allows very accurate acquisition
of dense point clouds of facial geometry moving at video
speeds. In order to utilize such data for motion analysis
and re-targeting, the question of correspondence must be ad-
dressed. Correspondences must be established between data
of the same face in different frames, as well as between dif-
ferent faces. In this paper we present a data driven approach
that consists of four parts: 1) High speed, high accuracy cap-

ture of moving faces, 2) Very precise tracking of facial mo-
tion by using a multi-resolution deformable mesh, 3) A uni-
fied low dimensional mapping of dynamic facial motion that
can separate expression style and 4) Synthesis of novel ex-
pressions as a combination of expression styles.

Facial animation is an active area of research in computer
graphics (see [PW96] for an overview of older work). In 2D
facial animation, many advanced examples of talking faces
have been produced with image-based methods [Bra, EGP],
which are mainly focused on the mouth region. Small ro-
tations are assumed in 2D methods and imaging conditions
can only be those of the original video.

To allow 3-D animations, several techniques have been
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Figure 1: Top left: Subject 1. Top Right: Subject 2. Bottom
Left: Subject 1 with synthetic smile transferred from Subject
2. Bottom Right: Detail of Synthesized Smile.

developed to create photo-realistic face models from 2D im-
ages [PHL∗, BV]. Physics-based models are used to sim-
ulate the surface deformations caused by muscle forces
[LTW, KHS03]. Mathematical approximation models in-
clude free form deformations [CHP, KMMTT], B-Spline
surfaces [MNS88] and variational approaches [DMS]. Re-
cently, both static 3-D scans of expressions [BV, BBPV] and
time-sequences of 3-D motion [GGW∗, KG02] have been
used to collect 3-D facial expressions. Expression cloning
[NN] can produce facial animations by reusing existing mo-
tion data. Morph-based approaches [BN, PHL∗], geometry-
based approaches [ZLGS03, JTDP03] and high level control
mechanisms [BB02] generate photo-realistic facial expres-
sions. Most current methods for capturing 3-D motion data
either require the use of 100-200 markers (e.g. [GGW∗])
which then need to be manually removed from the images, or
model fitting to multiple photographs. Using such methods
the recovered geometry of the expressions is rather crude.

Recent technological advances in digital projection dis-
play, digital imaging, and personal computers, are making 3-
D shape acquisition in real time increasingly available. Such
ranging techniques include spacetime stereo [ZCS, DRR],
and structured light [HHJC, RHHL]. In this paper we pro-
pose the use of high resolution dynamic 3-D shape data that
capture very accurate geometry at speeds that exceed video
frame rate. When scanning faces, our system returns an av-
erage of 75 thousand 3-D measurements per frame, at 40Hz
frame rate, with an RMS of 0.05mm. Such quality of data
allows for the capture of subtle expressions as well as the
temporal study of facial expressions. A major contribution
of this paper is the development of ways to parameterize

such a high amount of data in order to make it easy to use
while preserving the accuracy and visual quality that such
data guarantees.

The samples returned by our system are not registered
in object space and hence there is no guarantee of intra-
frame correspondences, which would make tracking of fa-
cial features problematic. For this reason, we use a multi-
resolution deformable face model. At the coarse level, we
use a mesh with 1K nodes that is suitable for facial anima-
tion. The coarse mesh was first developed for robust face
tracking in low quality 2-D images [GVM03] and we extend
it to 3-D data. This method is fast, and the deformation pa-
rameters for each facial motion are few and intuitive. How-
ever it cannot capture accurately the large number of local
deformations and expression details in our data, so we use it
for a coarse-level initial tracking.

The highly local deformations and details in expressions
are captured in a second level fitting process. For each frame
of the range scan, the resulting mesh from the coarse-level
tracking is used to initialize a subdivided refined mesh with
8,000 nodes. This finer mesh is registered to the frame based
on the 3-D extension of a variational algorithm for non-rigid
shape registration [HPM03]. This algorithm integrates an
implicit shape representation [OS88] and the cubic B-spline
based Free Form Deformations (FFD) model [SP, RSH∗99],
and generates a registration/deformation field that is smooth,
continuous and gives dense one-to-one correspondences.

Compared to other face model fitting techniques, such as
the network of Radial Basis Functions (RBF) [NN] or mesh
movement by blending nearest moving dots [GGW∗], our hi-
erarchical tracking and fitting scheme reflects a more accu-
rate model of facial motion. It can not only track global facial
motion that is caused by muscle action (coarse level), but fit
to subtler expression details that are generated by highly lo-
cal skin deformations (fine-level). Past efforts to simulate fa-
cial muscle actions [KMMTT] did not always produce con-
vincing facial expressions, due to the difficulty in simulating
muscles. Instead, we solve the inverse problem by tracking
real facial expressions using our hierarchical system, and re-
playing, synthesizing and re-targeting afterwards.

The availability of high quality dynamic expression data
opens a number of research directions to the modeling of
faces. Here we propose a new approach to the problem
of facial expression transfer, i.e. the synthesis of novel fa-
cial expressions on new models based on the analysis of
facial expressions captured from different subjects. Previ-
ously, researchers have used linear models (PCA [BV])
and variations such as bilinear models [TF00] and mul-
tilinear tensor models for facial expression analysis and
synthesis [EGP, CDB02]. However, a major limitation of
such models is that the dynamic facial expressions’ vi-
sual manifolds are non-linear. Our approach is based on
the use of a nonlinear dimensionality reduction frame-
work [RS00, TdSL00] that allows us to find an improved
representation of facial expressions and their related gener-
ative model, i.e. the mapping from a low dimensional man-
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ifold to the 3-D facial motion. This new approach allows us
to synthesize new generative models that integrate the facial
expression characteristics or expression style of different in-
dividuals. We can therefore capture the nonlinear aspects of
an individual’s facial expression and map them on a different
individual. Another advantage of our approach is that it takes
into account motions all over the face and not just around the
mouth or eyes, thus obviating the need for explicit modeling
of coarticulation effects and results in much more natural
looking motions.

The first step of our algorithm finds a nonlinear manifold
to represent the motion of an individual subject’s facial mo-
tion from the tracked 3-D nodal motions. In order to be able
to map the estimated motion manifolds from different indi-
viduals to a particular individual, the second step of our algo-
rithm computes a warping transformation that places all the
manifolds close in space. We term this new collection of in-
dividual manifolds the unified manifold. In this unified man-
ifold we learn, in the third step of the algorithm, the mapping
from each individual’s manifold to the individual’s 3-D mo-
tion. By analyzing the mapping functions based on the use
of generalized radial basis functions we are able to deter-
mine the expression characteristics of each individual’s fa-
cial motion. Finally, based on the learned mapping from the
unified manifold to an individual’s 3-D motion we can map
the expression characteristics from one individual to another
or from any combination of individuals to a single different
individual. We demonstrate two types of synthesis results:
morphing of geometry and expression between dynamic ex-
pression sequences of different individuals and expression
transfer from a source face to a target face, without further
changes in facial geometry.

In Section 2 of this paper we present our 3-D shape acqui-
sition system, in Section 3 we present our high accuracy fa-
cial tracking method and in Section 4 we discuss our learn-
ing method for the separation of expression style from indi-
vidual subjects. Expression synthesis results are presented in
Section 5 and future work in Section 6.

2.. Dynamic 3-D shape acquisition
The real-time 3-D shape acquisition system used in this
research is a higher acquisition rate version of the sys-
tem originally developed by Huang et al[HZC03]. It uses a
single-chip DLP projector and a three-step sinusoidal phase-
shifting algorithm [Mal92] to realize real-time 3-D shape ac-
quisition. Figure 3 shows the schematic diagram of the de-
veloped system. A color fringe pattern, whose red, green,
and blue components are the three phase-shifted fringe pat-
terns, is generated by a PC. When this color fringe pattern is
sent to a single-chip DLP video projector (Kodak DP900),
the three color channels, or the three phase-shifted fringe
patterns, are projected sequentially and repeatedly at a fre-
quency of 80 Hz. Since gray-scale fringe patterns are more
desirable, the color filters on the color wheel of the projector
are removed. For image capture, two CCD cameras, posi-
tionally aligned with a beam splitter, are used, one color and

Projector

Power supply

Color camera

Timing signal circuit

Beam splitter

B/W camera

Figure 2: Photograph of our real-time 3-D shape acquisi-
tion system (Box size: 24"×14"×10").

one black-and-white (B/W). The color camera (Uniq Vision
UC-930), with its exposure time set to one projection cy-
cle (12.5ms), is used to capture a color 2D image for tex-
ture mapping (averaging the three sinusoidal phase-shifted
fringe patterns with 120◦ phase shift cancels the fringes and
produces a flat image of the object). The B/W camera (Dalsa
CA-D6-0512W), which is a high-speed digital camera with
a maximum frame rate of 262 fps, is synchronized with the
projector to capture the three phase-shifted fringe images
for 3-D shape reconstruction. Due to the limited frame rate
of the camera, we are only able to capture the three phase-
shifted fringe patterns in two projection cycles (25ms), thus
achieving a frame rate of 40 Hz for 3-D shape acquisition.
However, since the relationship between any two neighbor-
ing patterns is the same (with a phase shift of 120◦), any
newly captured fringe pattern can be combined with its two
preceding patterns for 3-D shape reconstruction, thus achiev-
ing a real frame rate of up to 120 Hz for the current system
setup. If a higher speed camera is used, this speed can be
doubled to 240 Hz. On the other hand, if color texture map-
ping is required, the speed is lowered to 26 Hz due to the lim-
ited frame rate (maximum 30 fps) of the color camera used
in the current system. The RMS of uncertainty of depth is
0.05 mm with a measurement area of 260 × 244 mm. Figure
2 shows the developed hardware system. This real-time 3-D
shape acquisition system is described in detail in [ZH04].

3.. Tracking facial expressions: capturing details and
establishing correspondences

In order to utilize the acquired 3-D motion data, corre-
spondences need to be established between data in differ-
ent frames of the same face as well as between faces of dif-
ferent people. We adopt an approach in which we register
the face scans of different actors before performing an ex-
pression with a generic face model. Then a new hierarchical
framework is used to keep tracking the intra-frame deforma-
tions of the face model points during an expression, provid-
ing a tight coupling between global and local deformations.

The generic face model has two resolutions: a coarse level
with 1K nodes and a subdivided fine level with 8K nodes. We
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Figure 3: Schematic diagram of our real-time 3-D shape acquisition system.

use the 8K node mesh for the initial fitting between the face
model and an actor’s face scan before an expression. Fig-
ure 4 demonstrates this initial fitting process. First, the face
model and the 3-D scan data are roughly aligned by hand
(Figure 4(b)). Then the 3-D extension of a variational non-
rigid shape registration algorithm [HPM03] is used to reg-
ister the face model with this range scan, achieving a com-
plete surface match (Figure 4(c)). The algorithm is based on
the integration of an implicit shape representation and cu-
bic B-spline based Free Form Deformations (FFD). It rep-
resents shapes (e.g., the face model and the range scan) in
an implicit form by embedding them in the space of distance
functions of a Euclidean metric. A cubic B-spline based Free
Form Deformation (FFD) model [SP, RSH∗99] is then used
to minimize a sum-of-squared-differences criterion between
the embedding functions of a source (e.g., the model) and
a target (e.g., the range scan) surface, and recover the FFD
parameters that would map the source to the target. In this
paper, in order to constrain the initial dense correspondences
established by the registration algorithm, we define a small
set of feature points on the face model (typically around
30, as in Figure 4(a)), then manually select their correspon-
dences on the range data. These feature correspondences are
incorporated as hard constraints during the optimization pro-
cess of the registration algorithm (see [HZW∗04] for de-
tails), establishing very good initial correspondences..

After the initial fitting, a hierarchical scheme is adopted to
track the intra-frame deformations in an expression. At the
coarse level, we use the 1K node face model and extend the
deformable tracking system in [GVM03] to track 3-D dy-
namic range scans. The system divides the face model into
several deformable regions whose shape and motion are con-
trolled by a few parameters. Typically, for a smiling expres-
sion the face model is divided into 10 small regions with a
total of 17 parameters. Because of the small parameter set,
(which has the extra advantage of being intuitive to anima-

tors), this coarse-level tracking is very fast; however it can
not capture highly local deformations and fine details in the
expression. In order to estimate expression details, for each
frame of the dynamic range data, we use the coarse-level
tracking result to initialize the subdivided 8K node mesh at
the higher level. Then this 8K node refined mesh is registered
to the frame using the same variational non-rigid shape reg-
istration algorithm used for initial fitting. This hierarchical
tracking/fitting protocol provides a tight coupling between
global and local deformations, and results in efficient and
very detailed fitting to the 3-D face scan data (see Figure
5). Based on our extensive experiments, intra-frame corre-
spondences established by our system, especially between
facial features, are highly accurate (Figure 5(c-d)), as ex-
pected due to a number of reasons. First, the dense corre-
spondences in the tracking initialization process have high
accuracy since we used manually selected facial feature cor-
respondences as hard constraints. Second, due to the high
acquisition speed, the intra-frame deformations in our range
data are small, facilitating accurate and effective tracking.
Third, both coarse-level tracking and fine-level fitting al-
gorithms are sensitive to surface geometry. Facial features,
such as the tip of the nose, corners of the eyes and mouth,
have very distinctive geometry, and hence are tracked ro-
bustly. Last, but not least, our fine-level fitting/registration
algorithm imposes very strong smoothness constraints. Us-
ing the implicit shape representation, the algorithm aligns
the original surfaces as well as their clones, positioned co-
herently in the volumetric embedding space. The Free Form
Deformations (FFD) model also enforces both implicit and
explicit smoothness constraints. As a result, the established
correspondences are one-to-one, coherent and globally con-
sistent. More details on the mathematical formulation and
experimental validation of our hierarchical tracking system
can be found in [HZW∗04].
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(a) (b) (c)

Figure 4: (a) The generic face model with manually selected
feature points. (b) The face model and the face scan data are
roughly aligned. (c) The result of the initial fitting to a 3-D
face scan data.

(a) (b) (c) (d)

Figure 5: Top Row: Snapshots of the smile expression of
subject 1. Second Row: The smile expression of subject 2.
Third Row: The smile expression of subject 3. Bottom Row:
The Raising eyebrow expression of subject 3. Col.(a): Front
view of frame 1. Col.(b): Close-up view of Col.(a) (without
range scan - showing details; with range scan - showing
correspondences). Col.(c): Front view of frame 2. Col.(d):
Close-up view of Col.(c).

4.. Decomposable generative model for facial expressions
The question that we address is how to decompose three con-
ceptually orthogonal factors: face geometry, facial expres-
sion content (i.e., the type of the expression e.g., smile), and
expression style. For example, given several sequences of fa-
cial expressions, with different people performing the same
expression, how to decompose the intrinsic face configura-
tion through the expression (content) from the personalized
style of the person performing the expression (style) and how
to be able to cast such expression in a given style to a differ-

ent face geometry. As a learning problem, we aim to learn a
decomposable generative model that explicitly decomposes
the following two factors given a facial expression:
• Content (face configuration): The intrinsic facial config-

uration through the motion as a function of time that is
invariant to the person, i.e., the content characterizes the
motion of the expression.

• Style (people) : Time-invariant person parameters that
characterize the person performance of the expression.
If we consider a human facial expression as points in a

high dimensional face configuration space, then, given the
physical body constraints and the temporal constraints im-
posed by the expression being performed, it is expected that
these points will lie in a low dimensional manifold. We
can think of each expression performed by a certain per-
son as a trajectory in the face configuration space, i.e., these
points naturally lie on a one dimensional manifold charac-
terizing the expression motion. Such a manifold might twist
and self-intersect in such a high dimensional configuration
space [BO, Bra]. The shape of such manifold for a certain
expression (e.g., smile) is expected to be different from one
person to another as different people’s motion styles will fol-
low different twists on such manifolds. This means that the
manifold of the expression encodes both the content (e.g.,
smile) and also the personalized style.

Suppose that we can learn a unified, style-independent,
embedded representation of the expression manifold in a low
dimensional Euclidean embedding space, then we can learn
a set of style-dependent mapping functions from the embed-
ded representation to the face configurations space where
each of these mapping functions represents a certain per-
sonalized style. If we can do this decomposition, then mov-
ing along the style-independent embedded manifold while
choosing a certain style-dependent mapping function will
generate an expression trajectory in the face configuration
space. Of course, each person will have his own style-
dependent mapping function. Therefore, we need to parame-
terize such a mapping function in order to decompose certain
parameters that encapsulate the style. This way, we can have
an embedded representation of the expression manifold and
one mapping function that maps from the embedded repre-
sentation to the face configuration given a parameter that de-
scribes the style. For example for a smile expression, moving
along the manifold will generate a generic smile and chang-
ing the style parameter will stylize this smile.

Our approach is based on embedding the facial expres-
sion manifolds nonlinearly into a low dimensional space.
Given such embedding, different manifolds corresponding
to different people are normalized to achieve a unified em-
bedding of the expression manifold. Given a unified em-
bedding of the expression manifold, nonlinear mappings are
learned from such embedding to the original space. Since
the embedded manifolds are normalized, all the variations
due to personalized style are expected to be represented in
the nonlinear mapping space. Therefore, decomposing the
nonlinear mapping coefficients would facilitate separation of
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Figure 6: Low dimensional representation of smile motion:
An embedding of smile motion by LLE shows that smile mo-
tion can be well embedded in an one dimensional manifold
located in 3-D Euclidean space. Manifold points for similar
facial motions are located at nearby points in the manifold.

the style parameters. A general framework for separation of
style and content on nonlinear manifolds was introduced in
detail in [EL]. We briefly describe the approach as adapted
to facial expression analysis, in the next subsections.

4.1.. Unified Expression Manifolds Embedding
Since expression manifolds are nonlinear, i.e., distances in
the input space are nonlinearly related to distances along the
manifold, PCA [BV], bilinear [TF00] and multilinear [VT]
models will not be able to discover the underlying manifold
and decompose orthogonal factors. Simply put, linear mod-
els will not be able to interpolate intermediate facial geome-
try and/or intermediate styles.

We adapt the locally linear embedding (LLE) frame-
work [RS00] to achieve a low dimensional manifold embed-
ding for individual facial expressions that provides a good
representation of facial motion. LLE finds the best embed-
ding manifold by nonlinear dimensionality reduction given
the assumption that each data point and its neighbors lie on
a locally linear patch of the manifold, (details in [RS00]).
Figure 6 shows the embedding of a smile motion to a 3-
D Euclidean space. To optimally choose the neighborhood
size we use an error criterion based on the reconstruction
achieved by the fitted generative model in Equation 2.

A unified manifold embedding is achieved by warping
sample manifold points in the embedding space. Unified em-
bedding allows us to represent all the facial motion in one
manifold. For each manifold, points are approximated by fit-
ting a spline (with normalized parameters in the 0 to 1 range,
since we assume similar starting and ending facial condi-
tions across subjects). Correspondences are established by
re-sampling the normalized spline at equal intervals. Given
multiple manifolds a mean manifold is learned by warping
each manifold using non-rigid transformation using an ap-
proach similar to [CR].

4.2.. Learning a Decomposable Generative Model
We aim to learn a generative model in the form

ys
t = γ(xc

t ;a,bs) (1)

where the observed face motion, ys
t , at time t of style s is an

instance driven from a generative model where the function
γ(·) is a mapping function that maps intrinsic face config-
uration embedded coordinate xc

t (content) at time t into the
observation space given mapping parameters a and a style
parameter bs which is time invariant.

Given the unified embedding achieved in 4.1 we learn
a set of style-dependent nonlinear mapping functions from
the embedding space into the input space, i.e., functions
γs(xc

t ) : Re
→ Rd that map from embedding space with di-

mensionality e into the input space (observation) with di-
mensionality d for style class k. Since we consider nonlinear
manifolds and the embedding is nonlinear, the use of nonlin-
ear mapping is necessary. In particular we consider nonlinear
mapping functions of the form

γs(xt) = Bs
·ψ(xc

t ) (2)

where Bs is a d ×N linear mapping and ψ(·) : Re
→ RN is

a nonlinear mapping where N radial basis functions can be
used to model the manifold in the embedding space, i.e.,

ψ(·) = [ψ1(·), · · · ,ψN(·)]T

We use generalized radial basis function (GRBF) interpola-
tion [PG90] to the original sequence ys

t by solving for multi-
ple interpolants, i.e., Re

→ R for each tracking feature. Thin-
plate splines are used as the basis functions.

Since the embedded manifolds are normalized, all the
variations due to personalized style are expected to be rep-
resented in the nonlinear mapping space. Therefore, decom-
posing the nonlinear coefficient, Bs, would facilitate sepa-
ration of the style parameters. Given learned models in the
form of equation 2 for each person, the style can be decom-
posed in the linear mapping coefficient space using a bilinear
model in a way similar to [TF00, VT]. Therefore, input in-
stance yt can be written as an asymmetric bilinear model in
the linear mapping space as

yt = A×3 bs
×2 ψ(xc

t ) (3)

where A is a third order tensor (3-way array) with dimension-
ality d ×N × J and bs is a style vector with dimensionality
J and ×n denotes the mode-n tensor product. Given the role
for style and content defined above, the previous equation
can be written as

yt = A×3 bpeople
×2 ψ(xconfiguration

t ) (4)

This decomposition can be achieved by arranging the
mapping coefficients B1

, · · · ,BK for each person into a ma-
trix form B and applying singular value decomposition as
B = USV T , where the style vectors bs are the rows of V .

Figure 8 shows an example of decomposed style vectors
for three people. Each person’s style vector shows a different
dominant basis. New intermediate expression styles can be
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produced by linear combinations of people’s style vectors.
We can generate expressions in new styles by using any lin-
ear combination of the learned style vectors, plugging this
new style as the vector bs in equation 3 and change the vari-
able xc

t over time along the embedded manifold.

5.. Experimental results
All our experiments run at interactive rates on a Pentium
Xeon 3GHz dual processor platform. We present two exper-
iments to verify the effectiveness of our algorithms. In both
experiments, we analyze the expression style bs1, bs2 of two
persons. We then generate a new style vector bnew by linear
interpolation of these two styles using a control parameter α
as follows:

bnew = αbs1 +(1−α)bs2
, (5)

where, α = 0 corresponds to expression style bs2 and α =
1 corresponds to expression style bs1. An expression style
between bs2 and bs1 can be generated by varying the value
of α between 0 to 1.

The capabilities of our approach are shown in the videos
accompanying this paper. The first part of the video demon-
strates the dynamic 3-D shape capture system and the dy-
namic multi-resolution tracking of facial expressions. The
output of this part of our system are the 3-D nodal locations
of the model over time. These 3-D model nodal locations are
used for the dynamic morphing and expression transfer ex-
periments described in the following sections. Standard tex-
ture mapping and shading techniques are used to render the
tracking results. After the initial fitting on the first frame of
a sequence, each vertex on the control mesh is assigned the
color of the closest point from the 3-D scan data.

5.1.. Dynamic morphing of expression and geometry
In the first experiment, we used the global 3-D locations
of 8K model nodes after precise model fitting to the mo-
tion capture data as described in Sec. 3. These 3-D model
nodal positions estimate a person’s facial geometry and mo-
tion style for a given type of expression (content), see Sec. 4.
Therefore, for our dynamic morphing applications, expres-
sion style is the combination of an individual’s face geomet-
ric characteristics and motion characteristics. Our approach
allows us to go beyond traditional morphing between two
static faces, to dynamic morphing of geometry and expres-
sions.

Figure 7 shows that each new facial expression combines
geometric style (shape) as well as motion style when we
combine two persons’ style factors. Each column shows the
generation of new motions through time (content) for a given
person style. (fixed style). Each column corresponds to a
different expression style as well as a new facial geometry.
Columns (a) and (d) represent the motion styles of two per-
sons and columns (b) and (c) represent intermediate morph-
ing results, showing geometry variation according to style
change along each row.

In addition, we can also generate expression variation
with geometric morphing simultaneously by changing the

(a) (b) (c) (d)

Figure 7: Expression and geometry morphing. Col.(a): Sec-
ond actor’s original motion sequence, α = 0. Col.(d): First
actor’s original motion sequence, α = 1. Col.(c): Morphing
result with α = 0.2. Col.(d): Morphing result with α = 0.8.
From top to bottom, rows shows sampling of the generated
motions at the 1st, 25th and 50th frame out of the 150 total
frames.

style control parameter α between 0 and 1 over time. This
corresponds to moving over time from the top left of Fig-
ure 7 to the bottom right of Figure 7. In the submitted video
sequence we show this exact case of dynamic morphing of
expression and geometry with seamless transitions both in
geometry and in expression.
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Figure 8: Unified manifold and motion style vectors for the
geometric independent expression transfer

5.2.. Geometry independent expression transfer
In the second experiment, the goal is to synthesize and
transfer only facial expressions to other individuals. This is
achieved by analyzing facial expression styles independently
of individual facial geometry. First, we define a base facial
geometry for each individual in its object-centered reference

c© The Eurographics Association and Blackwell Publishing 2004.
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frame. Then the facial motion in an expression is represented
by the displacements between each frame geometry and the
base geometry. This approach is possible as we can capture
local deformations with consistent correspondences among
different people as well as in different frames of the same
person. We normalize the nodal points in each frame to elim-
inate variations in the displacements due to head size (a scal-
ing operation) or head motion (face centering operation). In
the normalization process, we subtract the mean value of all
nodal points in each frame from the original nodal points
and scale the whole mesh down to a unit size using the base
model’s face size. We choose the 3-D nodal positions of the
face model in the first tracking frame as the base facial model
since it is an actor’s neutral face geometry.

In our experiments we analyzed the smiling expres-
sions from three actors. Using our decomposable generative
model, we analyzed the motion style factor for each per-
son using the variation of the feature point location from the
base geometry. Figure 8 shows the learned unified manifold
(left) and the three individual motion style vectors (right).
When we apply a motion style to a new actor we compute
first the scale factor from the actor’s base geometry. There-
fore, we can transfer one actor’s motion style to another ac-
tor regardless of her facial geometry. In Figure 9, we show
two different base faces and the generation of new motion
styles by combining different style factors. Each row shows
four frames of the same motion style for two different base
face geometries, demonstrating the effects of facial expres-
sion transfer to different base geometries. The fourth row for
the first actor (α = 1) and the first row of the second actor
(α = 0) show their original facial expressions. The second
and third rows show new expressions styles by interpolation
of style factors from rows 1 and 4. Figure 10 shows the map-
ping of the facial expression of previous two actors to new
actor. The first row is the expression derived from the second
actor, and the second row from the first actor.

6.. Conclusions
In this paper we presented a system that accurately captures
high speed, high resolution dynamic 3-D data and associated
texture. We developed a multi-resolution method for intra-
frame registration of freely deforming 3-D meshes and cap-
tured a small database of 3-D facial expressions from a few
different subjects. We non-linearly projected our extremely
high dimensional facial motion data onto low dimensional
manifolds, which then were unified in a common embed-
ding, which allows for the factorization of the most discrimi-
nating characteristics for each subject’s expressions. Finally,
synthesis of new facial motions was achieved through com-
bined 3-D geometry and motion morphing, or through ex-
pression transfer.

Limitations of the method that will be addressed in future
work include the absence of skin reflectance modeling for
rendering under different illumination conditions as well as
the absence of a specialized interior mouth and lip model to
allow for large open mouth expressions. Since there no coar-

ticulation issues for the types of applications we examined
in this paper, the incorporation of editing abilities of individ-
ual motion parameters that make sense to animators, into the
global style analysis framework, should be straightforward.
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