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Abstract

We aim to infer 3D body pose directly from human sil-
houettes. Given a visual input (silhouette), the objective is
to recover theintrinsic body configuration, recover the view
point, reconstruct theinput and detect any spatial or tempo-
ral outliers. Inorder to recover intrinsic body configuration
(pose) from the visual input (silhouette), we explicitly learn
view-based representations of activity manifolds as well as
learn mapping functions between such central representa-
tions and both the visual input space and the 3D body pose
space. The body pose can be recovered in a closed formin
two steps by projecting the visual input to the learned repre-
sentations of the activity manifold, i.e., finding the point on
the learned manifold representation corresponding to the
visual input, followed by interpolating 3D pose.

1. Introduction

Recovery of 3D body pose is a fundamental problem
for human motion analysis in many applications such as
motion capture, vision interface, visual surveillance, and
gesture recognition. Human body is an articulated object
that moves through the three-dimensional world. This mo-
tion is constrained by 3D body kinematics and dynamics
as well as the dynamics of the activity being performed.
Such constraints are explicitly exploited to recover the body
configuration and motion in model-based approaches, such
as [12, 10, 21, 20, 9, 14, 26], through explicitly specify-
ing articulated models of the body parts, joint angles and
their kinematics (or dynamics) aswell asmodelsfor camera
geometry and image formation. Recovering body configu-
ration in these approaches involves searching high dimen-
sional spaces (body configuration and geometric transfor-
mation) which is typically formulated deterministically as
anonlinear optimization problem, e.g. [20], or probabilisti-
cally as amaximum likelihood problem, e.g. [26]. Such ap-
proaches achieve significant success when the search prob-
lem is constrained as in a tracking context. However, ini-
tialization remains the most challenging problem which can
be partially aleviated by sampling approaches. Partia re-
covery of body configuration can aso be achieved through

intermediate view-based representations (models) that may
or may not be tied to specific body parts [6, 5, 31, 13, 27].
Alternatively, 3D body pose can be directly inferred from
thevisua input [11, 2, 23, 22, 16, 15, 25]. We call such ap-
proaches learning-based since their objective is to directly
infer the 3D body pose as a function of the visual input.
Such approaches have great potentialsin solving the funda-
mental initialization problem for model-based vision.

The approach we present in this paper is inline with the
learning-based approaches for pose recovery. In this pa
per we introduce a novel framework for inferring 3D body
pose from silhouettes using a single monocular uncalibrated
camera. The framework is based on explicitly learning
view-based representations of the activity manifoldsaswell
as learning mapping functions from such central represen-
tation to both the visual input space and the 3D body pose
space. Given avisua input (silhouette) the body pose can
be recovered in a closed form. The framework can simul-
taneously recover body configuration, the view point and
reconstruct the input. We apply the framework for the gait
as an example of a common human activity where we can
successfully estimate the body pose for walking figures.

1.1. Related Work

In the last decade there have been extensive research in
human motion analysis. We refer the reader to [8] for ex-
tensive survey of the broad subject. We focus our survey on
related research on direct inference of 3D posefromimages.

Inferring 3D pose from silhouettes can be achieved by
learning mapping functionsfrom the visual input to the pose
space. However, learning such mapping between high di-
mensional spaces from examples is fundamentally an ill-
posed problem. Therefore certain constraints have to be
exploited. In[23, 22], learning specialized nonlinear map-
pings from Hu moment representation of the input shape
and the pose space facilitated successful recovery of the
pose directly from the visua input. In [2], the problem
was constrained using nonlinear manifold learning where
the pose is inferred by mapping sequences of the input to
paths of the learned manifold. In [11] the reconstruction
was based on 2D tracking of joints and aprobabilistic model
for human motion. In [15] 3D structure is inferred from
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Figure 1. Block diagram for the framework. Top: Leaning
components. Bottom: 3D pose estimation.

multi-view using a probabilistic model of multi-view sil-
houettes and key points on the object. Inferring pose can
also be posed as a nearest neighbors search problem where
theinput is matched to a database of exemplars with known
3D pose. In[16] poseisrecovered by matching the shape of
the silhouette using shape context. In [25] locality sensitive
hashing was used to efficiently match local modelsfrom the
input to large exemplar sets.

The approach we use in this paper constrains the map-
ping problem through explicitly learning the activity mani-
fold. Explicit manifold learning was previously used in [17]
for modeling the appearance of rigid objects under changes
in view points and illumination with linear PCA.

2. Framework

Given a visua input (silhouette), the objective is to re-
cover the intrinsic body configuration, recover the view
point, reconstruct the input and detect any spatial or tem-
poral outliers. In other words, we aim to simultaneously
solve for the pose, view point, and reconstruct the input.

If we consider the silhouette of a human performing cer-
tain activity or gesture, the shape of such silhouette deforms
over time based on the activity performed. These defor-
mations are constrained by the physical body constraints
and the temporal constraints posed by the action being per-
formed. For example, If we consider walking (gait), the
human silhouettes through the walking cycle are pointsin a
high dimensional visual input space. Given the spatial and
the temporal constraints, it is expected that these points will
lie on a low dimensional manifold. Intuitively, the gait is

a 1-dimensional manifold which is embedded in a high di-
mensional visual space. Such manifold can be twisted, self-
intersect in such high dimensional visual space. Similarly, if
we consider other human activities such as gesturing, most
of the gesture motion are also one-dimensional manifolds.

Given that such activity manifolds are low dimensional,
the body pose can be recovered by projecting the visual
input to a learned embedded representation of the activity
manifold, i.e., finding the point on the learned manifold rep-
resentation corresponding to thevisua input. The questions
are: how can we learn such representation of the manifold?
and how to project from the input to such representation?
The main challenge is that such manifolds are nonlinear
since shape of the silhouette temporally undergoes defor-
mations and self-occlusion which result in the points lying
on a nonlinear, twisted manifold. Such nonlinear nature of
the manifold makes the problem not obvious. Because of
such nonlinearity, linear models such as PCA will not be
able to discover the underlying manifold.

Learning nonlinear manifolds is typically performed in
the visua input space or through intermediate representa
tions. HMM models provide a probabilistic piecewise lin-
ear approximation of the manifold which can be used to
learn nonlinear manifoldsasin [4] andin[2]. Alternatively,
Exemplar-based approaches such as [29] implicitly model
nonlinear manifolds through points (exemplars) aong the
manifold. Such exemplars are represented in the visua in-
put space. Recently some promising frameworksfor nonlin-
ear dimensionality reduction have been introduced includ-
ing isometric feature mapping (Isomap) [28], Loca linear
embedding (LLE) [24]. Both Isomap and LLE frameworks
were shown to be able to embed nonlinear manifolds into
low-dimensional Euclidean spaces for toy examplesas well
as for real images. Recently, in [30], Isomap was used to
enhance the tracking of parameterized contours within the
Bayesian tracking framework. Related nonlinear dimen-
sionality reduction work also includes[3].

In order to recover intrinsic body configuration (pose)
from the visual input (silhouette) we explicitly learn view-
based representations of the activity manifold as well as
learn mapping functions between such representations and
both the visual input space and the 3D body pose space. The
framework is based on |earning three components as shown
infigure 1-a

1. Learning Manifold Representation: using nonlinear di-
mensionality reduction we achieve an embedding of
the global deformation manifold that preservesthe ge-
ometric structure of the manifold. Given such em-
bedding, the following two nonlinear mappings are
learned.

2. Manifold-to-input mapping: anonlinear mapping from
the embedding space into visual input space.



3. Manifold-to-pose: a nonlinear mapping from the em-
bedding space into the 3D body pose space.

We use Generalized Radial Basis Function (GRBF) inter-
polation framework for such nonlinear mapping. We show
how approximate solution for the inverse mapping can be
obtained by solving for the inverse of the manifol d-to-input
mapping in a closed form which facilitates the recovery of
the intrinsic body configuration. Given a visual input (sil-
houette), its projections into view-based manifolds can be
recovered in a closed form and therefore, the view can be
determined using an embedding space error metric. Given
the embedding coordinate, the 3D body pose can be directly
interpolated using the learned manifol d-to-pose mapping.
The following sections describe the details of the ap-
proach. Section 3 describes learning manifold representa-
tion. Section 4 describes learning nonlinear mapping from
the manifold to the input and to the 3D pose space as well
as the approach for pose recovery and view determination.

3. Learning Manifold Representation
3.1. Silhouette Representation

We use a global landmark-free correspondence-free rep-
resentation of the visual input (silhouettes). There are two
main motivations behind such representation: 1) Establish-
ing correspondences between landmarks on the silhouettes
is not not always feasible (has no meaning) because of the
changes in topology over time (as in the gait case). Cor-
respondences between landmarks (contours) are not always
feasible because of self occlusion. 2) We aim to recover
the pose from noisy and fragmented silhouettes. Landmark-
based representations are typically sensitive to such effects.

We represent each shape instance as an implicit function
y(x) a each pixel = such that y(z) = 0 on the contour,
y(x) > 0 inside the contour, and y(z) < 0 outside the
contour. We use a signed-distance function such that

de(x) x inside ¢
ylx)=4¢ 0 x on ¢
—d.(z) =z outside ¢

where the d.(z) is the distance to the closest point on the
contour ¢ with a positive sign inside the contour and a neg-
ative sign outside the contour. Such representation imposes
smoothness on the distance between shapes. Given such
representation, the input shapes are points y; € R%,i =
1,---, N whereall theinput shapesare normalized and reg-
istered and d isthe the dimensionality of theinput spaceand
N isthe number of points. Implicit function representation
istypically used in level-set methods [18].

3.2. Nonlinear Embedding

We adapt an L LE framework [ 24] to embed activity man-
ifolds nonlinearly into a low dimensional space. Given the

assumption that each data point and its neighbors lie on a
locally linear patch of the manifold, each point can be re-
constructed as a linear combinations of its local neighbors.
The objectiveisto find the reconstruction weights that min-
imize the global reconstruction error. Optimal solution for
such optimization problem can be found by solving a least-
squares problem. Since the recovered weights reflect the
intrinsic geometric structure of the manifold, an embedded
manifoldin alow dimensional space can be constructed us-
ing the same weights. This can be achieved by solving for
a set of points, in alow dimensional space, that minimizes
the reconstruction error where in this case the weights are
fixed. Solving such problem can be achieved by solving an
eigenvector problem. We refer the reader to [24] for details.

We applied the LLE to discover the geometric structure
of the gait manifold as well as to establish a low dimen-
sional embedding of such manifold. We used data sets of
walking people from multiple views. Each data set consists
of 300 frames and each containing about 8 to 11 walking
cycles of the same person from certain view points®. In our
case, the neighborhood of each point is determined by its K
nearest neighbors based on the distance in the input space.
One point that need to be emphasized is that we do not use
the temporal relation to achieve the embedding, since the
goal isto obtain an embedding that preserves the geometry
of the manifold. Tempora relation can be used to deter-
mine the neighborhood of each shape but that was found
to lead to erroneous artificial embedding. We also applied
Isomap [28] framework on the same data to validate the re-
sults. Both Isomap and LLE resulted in qualitatively similar
manifold embedding.

Figure 2 illustrates the resulting embedded manifold for
asideview of the walker. Figure 3 illustrates the embedded
manifoldsfor five different view points of the walker. For a
given view point, the walking cycle evolves along a closed
curve in the embedded space, i.e., only one degree of free-
dom controls the walking cycle which corresponds to the
constrained body pose as a function of the time. Such con-
clusion is conforming with the intuition that the gait man-
ifold is one dimensional. As mentioned earlier, temporal
information was not used in the embedding. However, tem-
poral informationis used for visualizationin figures2 and 3.
As apparent from the figures, embedding well preservesthe
temporal relation between input silhouettes.

Embedding Space Dimensionality: The questionis: what
istheleast dimensional embedding space we can use to em-
bed the walking cycle in a way that discriminate different
poses through the whol e cycle? The answer depends on the
view point. The manifold twists in the embedding space
given the different view points which impose different self
occlusions. The least twisted manifold is the manifold for

1The data used are from the CMU Mobo gait data set which contains
25 people from six different view points. The walkers were using treadmill
which might results in different dynamics from the natural walking



Figure 2. Embedded gait manifold for aside view of thewalker.
Sample frames from a walking cycle aong the manifold with the
frame numbers shown to indicate the order. Ten walking cycles are
shown.

the back view as this is the least self occluding view (left
most manifoldin figure 3). In this case, the manifold can be
embedded in atwo dimensional space. For other views the
curve starts to twist to be a three dimensional space curve.
Thisis primarily because of the similarity imposed by the
view point which attracts far away points on the manifold
closer. The ultimate twist happens in the side view man-
ifold where the curve twists and possibly self intersect to
be a figure eight shape where each cycle of the eight (half
eight) lies on a different plane. Each cycle of the eight fig-
ure corresponds to half a walking cycle. The closest point
(cross point in case of intersection) representsthe body pose
where it is ambiguous, from the side view, to determine
from the shape of the contour which leg is in front as can
be noticed in Figure 2. Therefore, in a side view, three-
dimensional embedding spaceisthe least we can useto dis-
criminate different poses. Embedding a side view cyclein
a two-dimensional embedding space typically results in an
embedding where the two half cycleslie over each other.

4. Learning Mapping
4.1. Learning Mapping: Manifold-to-I nput

Given a visua input (silhouette), the objective is to re-
cover the intrinsic body configuration by finding the point
on the manifold in the embedding space corresponding to
this input. Recovering such embedded representation will
facilitate reconstruction of the input and detection of any
spatial or temporal outliers.

Sincethe objectiveisto recover body configuration from
the input, it might be obvious that we need to learn map-
ping from the input space, R¢, to the embedding space, R¢.
However, learning such mapping is not feasible since the

,——\_\
‘/va' ‘ ’ . (,’/
(o N\ 4
a8 S ' L = /‘ - \
f;% 7 X
~~ y

Figure 3. Embedded manifolds for 5 different views of the
walkers. Frontal view manifold isthe right most one and back view
manifold is the leftmost one. We choose the view of the manifold
that best illustrates its shape in the 3D embedding space

visual input is very high-dimensional so learning such map-
ping will require very large number of samples in order to
be able to interpolate. Instead, we learn the mapping from
the embedding space to the visual input space with amech-
anism to directly solvefor the inverse mapping.

It iswell know that learning a smooth mapping from ex-
amplesis an ill-posed problem unless the mapping is con-
strained since the mapping will be undefined in other parts
of the space[19, 1]. We argue that, explicit modeling of the
visual manifold represents away to constrain any mapping
between the visual input and any other space. Nonlinear
embedding of the manifold, as was discussed in the previ-
ous section, represents a general framework to achieve this
task. Constraining the mapping to the manifold is essential
if we consider the existence of outliers (spatial and/or tem-
pora) in the input space. This also facilitates |earning map-
pingsthat can be used for interpol ation between poses aswe
shall show. In what follows we explain our framework to
recover the pose. In order to learn such nonlinear mapping
we use Generalized Radial Basis Function (GRBF) interpo-
lation framework [19]. Radial basis functions interpolation
provides a framework for both implicitly modeling the em-
bedded manifold aswell aslearning a mapping between the
embedding space and the visual input space. In this case,
the manifold is represented in the embedding space implic-
itly by selecting aset of representative points along the man-
ifold.

Let the set of input instances (silhouettes) be Y = {y; €
R* i =1,---,N} and let their corresponding pointsin
the embedding spacebe X = {z; € R¢, i=1,---,N}
where e is the dimensionality of the embedding space (e.g.
e = 3inthecaseof gait). Let {t; € R®,j = 1,---,N;}
be a set of N, centers (not necessarily at data points) in
the embedding space where such centers can be obtained
using k-means clustering or EM agorithm. We can solve
for multiple interpolants f* : R® — R where k is k-th
dimension (pixel) in theinput space and f* isaradial basis



functioninterpolant, i.e., we learn nonlinear mappingsfrom
the embedding space to each individual pixel in the input
space. Of particular interest are functions of the form

Ny
FH@) = pF @)+ whe(e — i), (1)

i=1

that satisfies the interpolation condition
yr = fF(x)

where ¢(-) isarea-valued basic function, w; arerea coef-
ficients, | - | isthe norm on R¢ (the embedding space). Typ-
ical choicesfor the basis function includes thin-plate spline
(p(u) = u2log(u)), the multiquadric (¢(u) = Vu2 + c2),
Gaussian (¢(u) = e~*"), biharmonic (¢(u) = u) and tri-
harmonic (¢(u) = u®) splines. p*(z) isalinear polynomial
with coefficients c*, i.e,, p*(z) = [l 27| - c*. Thislinear
polynomial is essential to achieve approximate solution for
the inverse mapping as will be shown.
The whole mapping can be written in amatrix form as

f(z) = B-(x), )

where B isad x (N;+e+1) dimensional matrix with the
k-throw [w} - wk, ¢*'] and the vector ¢ (z) is

(ol —ta]) -~ bz —tn]) T 7]

Thematrix B representsthe coefficientsfor d different non-
linear mappings, each from a low-dimension embedding
space into real numbers. To insure orthogonality and to
make the problem well posed, the following additional con-
straints are imposed

N
=1

wherep; arethelinear basis of p. Thereforethe solution for
B can be obtained by directly solving the linear systems

BT = . @3
( P 0(et1)x(e+1) O(et1)xd @

where A is N x N, matrix with A;; = ¢(|x; — t;]), =
1---N,j=1---Ny PyisaN x (e + 1) matrix with i-th
row[l z]], PrisaN; x (e+1) matrix withi-throw [1 ¢]].
Y is (IV x d) matrix containing the representative input im-
ages,i.e, Y = [y1---yn|". Solution for B is guaranteed
under certain conditions on the basic functions used [19].

Given such mapping, any input is represented by linear
combination of nonlinear functions centered in the embed-
ding space along the manifold. Equivalently, this can be
interpreted as a form or basis images (coefficients) that are
combined nonlinearly using kernel functions centered along
the embedded manifold.

4.2. Solving For the Embedding Coordinates

Givenanew input y € R4, it isrequired to find the cor-
responding embedding coordinates x € R¢ by solving for
the inverse mapping. There are two questions that we need
to answer:

1. What is the coordinates of point z* € R€ in the em-
bedding space corresponding to such input?

2. What is the closest manifold point corresponding to
such input?

To answer thefirst question we need to obtain a solution for
z* = arg,min||y — By(z)|?. 4

Each input yields a set of d nonlinear equations in e un-
knowns (or d nonlinear equationsin one e-dimensional un-
known). Thereforeasolutionfor x* can be obtained by least
square solution for the over-constrained nonlinear system
in 4. However, because of the linear polynomial part in the
interpolation function, the vector ¢ (x) has a special form
that facilitates a closed-form least square linear approxima-
tion and, therefore, avoid solving the nonlinear system. This
can be achieved by obtaining the pseudo-inverseof B. Note
that B hasrank N since N distinctive RBF centersare used.
Therefore, the pseudo-inverse can be obtained by decom-
posing B using SVD such that B = USV ™ which can be
performed offline. Therefore, vector ¢ () can be recovered
simply as
Y(z) =VSUTy

where S is the diagonal matrix obtained by taking the in-
verse of the nonzero singular values in the diagonal matrix
S and setting therest to zeros. Linear approximation for the
embedding coordinate = can be obtained directly by taking
thelast e rowsin the recovered vector ().

The recovered point x is typically enough to recover the
pose. However to enhance the result and constrain the solu-
tion, we need to answer the second question above, which
can also be obtained efficiently. We need to find the point
on the manifold closest to the projection x*. For the gait
case, the manifold is one dimensional, and therefore, only
one dimensional search is sufficient to recover the manifold
point closest to the input. To obtain such point, the embed-
ded manifold isfitted with a cubic spline m(t) asafunction
of thetimevariablet € [0, 1] where each cycle of the activ-
ity is temporally mapped from 0 to 1. Given such model, a
one dimensional search is used to obtain ¢* that minimizes
||z —m(t)]|. Reconstruction can be achieved by re-mapping
the projected point using 2.

4.3. Determining View Point

Given the learned view-based manifolds M, and the
learned view-based mappings B, ¢, () for each view v, de-
termining the view point reduces to finding the manifold



that minimizes the inverse-mapping error of an input y or a
sequence of inputs y;. Given an input y and its projections
a7 we chose the manifold that minimizes ||z — m., (t,*)].
Figure 4 shows five view manifolds and the projection of a
seguence to the five manifolds.

4.4, Learning Mapping: Manifold-to-3D

Similar to the mapping from the embedding space into
the visual input, a mapping can be learned from the embed-
ding space to the 3D body joint space. RBF interpolantsin
theform of equation 1 between the embedding space R € and
each degree of freedom of each body joint. We represent
the body using 16 joints model and each joint is represented
by its coordinatesin a body centered global coordinate sys-
tem. Representative points on the manifolds aswell astheir
corresponding 3D body configurations are used in order to
learn the mapping parameters as was shown in section 4.

4.5. Learning Multiple People Manifolds

The approach we described in this paper can be general-
ized to learn manifolds and mappings from multiple people
data. However certain fundamental issues have to be ad-
dressed:

e How tolearn unified representation of acertain activity
manifolds from multiple people sequences.

e How to learn style-based nonlinear mappings from the
unified manifold representation to each person silhou-
ettes.

e Given an input, how to solve for both the person and
the pose in the embedding space.

In [7] we presented a general framework to learn multiple
people manifolds and to separate the content (body configu-
ration) as time-dependent function from time-invariant style
(person) parameters. Thisframework generalizes the learn-
ing procedure introduced in this paper.

5. Experimental Result

In thefirst experiment, we used a sequence from Georgia
tech gait data with ground truth provided by motion capture
data. the sequence contains 72 frames where we learn the
model using the odd numbered frames and evaluated on the
even numbered frames. The resulted 3D reconstruction is
compared to the ground truth and is plotted in figure 9 for
four of the sixteen joint angles. This experiment validates
that our approach can interpolate 3D poses from unseenin-
put silhouettes.

In order to show that the approach generalizes to differ-
ent people, we used the CMU MoboGait database to train
and evaluate the proposed approach. Each sequence of the
database contains about 300 frames (8-11 walking cycles).

The database contains 6 views of each walking person. We
used five of them. The used views are shown in figure 4.

In each experiment, we used one person sequences to
learn the manifolds of the five views and the mappingsfrom
the manifolds to the input sequences. The mappings from
each of the manifolds to 3D body configuration were also
learned. For the eval uation we use other peopl€'s sequences
to evaluate the 3D reconstruction 2. Figure 5 showstheview
classification results for five eval uation sequences (five peo-
ple) and five views. Overall correct classification rate is
93.05%. Obvioudly the view classification from a single
frame can be erroneous because of self occlusion and there-
fore boosting several frames would lead to better results
whichisshowninfigure 5-bwhere mgjority vote were used
over sequence of each five frame view classification which
resultsin a correct classification rate of 99.63%.

Figure 5 shows the 3D reconstruction for one person for
each of the five views. Since the input sequences are syn-
chronized, the reconstructed 3D poses from each view are
supposed to be the same. The 3D reconstructionsare always
shown from the side view point. The reconstruction shows
qualitatively correct reconstruction from all views. Unfor-
tunately, there are no ground truth to evaluate the results
of this experiment. Figure 8 show some 3D reconstruction
results for four other people. As can be noticed, the input
silhouettes are noisy.

Figure 7 shows 3D pose reconstructed from corrupted
silhouette which are typical in surveillance applications due
to errors in background subtraction, shadows, fragmenta-
tion, and carried objects. Reconstruction of theinput silhou-
ettes can be achieved by mapping back to the input space.
Results related to input reconstruction were reported in [ 7]

6. Conclusion

In this paper we introduced a learning-based framework
for inferring 3D body pose from silhouettes using a single
monocular uncalibrated camera. The framework is based
on explicitly learning view-based representations of the ac-
tivity manifoldsas well as|earning mapping functionsfrom
such central representation to both the visual input space
and the 3D body pose space. Given avisual input (silhou-
ette) the body pose can be recovered in a closed form. We
applied the framework for the gait as an example of acom-
mon human activity where we can successfully estimate the
body pose for walking figures. The experiments showed
that the model can be learned from one person data and
successfully generalizes to recovering poses for other peo-
ple from noisy data. Compared to previous approaches for
inferring 3D body pose from visual input, we can point out
certain advantageousand limitations. Our framework facili-
tates interpolation of intermediate 3D poses even if they are

2For the experiment we show here we use person 37 for the learning
and evaluate on persons 15 in figure 5 and on 70, 86, 76, 79 in figure 8



Figure 5. 3D reconstruction for five views.

not part of the training data. Unlike [23, 2], where map-
ping is learned directly between the input and pose space,
our framework constrains the mapping to the learned man-
ifold which facilitates robust pose recovery from noisy and
corrupted inputs as well as for reconstruction of the input.
Unlike [2], where sequences of the input is required to re-
cover the pose, the framework facilitates recovery of the
pose from single input instances as well as from sequences
of input. Similar to [2], our approach is based on learning
activity manifold and therefore its application is limited to
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Figure 6. a view classification from single framesb- view clas-
sification with boosting multiple frames

y

Figure 7. 3D reconstruction from corrupted inputs
recovery of poses for the learned activities only. In this pa-
per we focus on the gait case. However the framework is

general and can be applied to other activities by learning
their manifolds.
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