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Abstract

Bilinear and multi-linear models have been successful in
decomposing static image ensembles into perceptually or-
thogonal sources of variations, e.g., separation of style and
content. If we consider the appearance of human motion
such as gait, facial expression and gesturing, most of such
activities result in nonlinear manifolds in the image space.
The question that we address in this paper is how to sep-
arate style and content on manifolds representing dynamic
objects. In this paper we learn a decomposable generative
model that explicitly decomposes the intrinsic body config-
uration (content) as a function of time from the appearance
(style) of the person performing the action as time-invariant
parameter. The framework we present in this paper is based
on decomposing the style parameters in the space of nonlin-
ear functions which map between a learned unified nonlin-
ear embedding of multiple content manifolds and the visual
input space.

1. Problem Statement and Related Work

Linear, Bilinear and Multi-linear Models: Linear mod-
els, such as PCA [8], have been widely used in appearance
modeling to discover subspaces for appearance variations.
For example, PCA has been used extensively for face recog-
nition such as in [13, 1, 6, 10] and to model the appearance
and view manifolds for 3D object recognition as in [14].
Such subspace analysis can be further extended to decom-
pose multiple orthogonal factors using bilinear models and
multi-linear tensor analysis [19, 22]. The pioneering work
of Tenenbaum and Freeman [19] formulated the separation
of style and content using a bilinear model framework [11].
In this work, a bilinear model was used to decompose face
appearance into two factors: head pose and different people
as style and content interchangeably. They presented a com-
putational framework for model fitting using SVD. Bilinear
models have been used earlier in other contexts [11, 12].
In [22] multi-linear tensor analysis was used to decompose
face images into orthogonal factors controlling the appear-
ance of the face including geometry (people), expressions,
head pose, and illumination. They employed n-mode SVD

to fit multi-linear models. Tensor representation of image
data was used in [17] for video compression and in [21]
for motion analysis and synthesis. N-mode analysis of
higher-order tensors was originally proposed and developed
in [20, 9, 11] and others.

Nonlinear Manifolds and Decomposition: The applica-
tions of Multilinear tensor analysis as in [19, 22] to decom-
pose variations into orthogonal factors are mainly for static
image ensembles. The question we address in this paper is
how to separate the style and content on a manifold repre-
senting a dynamic object. To illustrate our point we con-
sider the human silhouette through the walking cycle (gait)
such as shown in figure 1. If we consider such shapes as
points in a high dimensional visual input space, then, given
the physical body constraints and the temporal constraints
imposed by the action being performed, it is expected that
these points will lay on a low dimensional manifold. Intu-
itively, the gait is a 1-dimensional manifold which is embed-
ded and twisted in a high dimensional visual space. Simi-
larly, other human activities such as gesturing, are also low-
dimensional manifolds [4, 2]. The question that we address
in this paper is how to separate style and content on such
manifolds. For example, given several sequences of walk-
ing silhouettes, as in figure 1, with different people walking,
how to decompose the intrinsic body configuration through
the action (content) from the appearance (or shape) of the
person performing the action (style).

Why don’t we just use a bilinear model to decompose the
style and content in our case where certain body poses can
be denoted as content and different people as style? The an-
swer is that in the case of dynamic (e.g. articulated) objects
the resulting visual manifold is nonlinear. This can be illus-
trated if we consider the walking cycle example in figure 1.
In this case, the shape temporally undergoes deformations
and self-occlusion which result in the points lying on a non-
linear, twisted manifold. The two shapes in the middle of
the two rows correspond to the farthest points in the walking
cycle kinematically and are supposedly the farthest points
on the manifold in terms of the geodesic distance along the
manifold. In the Euclidean visual input space these two
points are very close to each other as can be noticed from
the distance plot on the right of Figure 1. Because of such



Figure 1. Twenty sample frames from a walking cycle from a
side view. Each row represents half a cycle. Notice the similarity
between the two half cycles. The right part shows a plot of the
distance between the samples. The two dark line parallel to the
diagonal shows the similarity between the two half cycles.

nonlinearity, PCA, bilinear, multilinear models will not be
able to discover the underlying manifold and decompose or-
thogonal factors. Simply, linear models will not be able to
interpolate intermediate poses and/or intermediate styles.

Another limitations of multilinear analysis, as presented
in [19, 22], is that it is mainly a supervised procedure where
the image ensemble need to be arranged into various style,
content or orthogonal factor classes beforehand. Such re-
quirement makes it hard if we try to use bilinear or multi-
linear models with image sequences to decompose orthog-
onal factors on a manifold. Typically, input sequences can
be of different lengths, with different sampling rates, and
with people performing the same activity with different dy-
namics. So we aim to have an unsupervised procedure with
minimal human interaction.

Nonlinear Dimensionality Reduction and Decomposi-
tion of Orthogonal Factors: Recently some promis-
ing frameworks for nonlinear dimensionality reduction
have been introduced including isometric feature mapping
(Isomap) [18], Local linear embedding (LLE) [16]. Related
nonlinear dimensionality reduction work also includes [3].
Both Isomap and LLE frameworks were shown to be able
to embed nonlinear manifolds into low-dimensional Eu-
clidean spaces for toy examples as well as for real images.
Such approaches are able to embed image ensembles non-
linearly into low dimensional spaces where various orthog-
onal perceptual aspects can be shown to correspond to cer-
tain directions or clusters in the embedding spaces. In this
sense, such nonlinear dimensionality reduction frameworks
present an alternative solution to the decomposition prob-
lems. However, the application of such approaches is lim-
ited to embedding of a single manifold. As we will show, if
we introduce multiple manifolds (corresponding to different
styles) to such approaches, they tend to capture the intrin-
sic structure of each manifold separately without general-
izing to capture inter-manifolds aspects. This is because,
typically, intra-manifold distances are much smaller than
inter-manifold distances. The framework we present in this
paper uses nonlinear dimensionality reduction to achieve
an embedding of each individual manifold. However, our
framework extends such approaches to separate the inter-
manifolds style parameter.

Contribution: We introduce a novel framework for sepa-
rating style and content on manifolds representing dynamic
objects. We learn a decomposable generative model that ex-

plicitly decomposes the intrinsic body configuration (con-
tent) as a function of time from the appearance (style) of
the person performing the action as time-invariant param-
eter. The framework we present in this paper is based on
decomposing the style parameters in the space of nonlinear
functions that maps between a learned unified nonlinear em-
bedding of multiple content manifolds and the visual input
space.

2. Decomposable Generative Model

We are given a set of image sequences representing cer-
tain motion such as gesture, facial expression or activity.
Each sequence is performed by one subject. Given such se-
quences we aim to learn a decomposable generative model
that explicitly decomposes the following two factors:

• Content (body pose): A representation of the intrinsic
body configuration through the motion as a function
of time that is invariant to the person, i.e., the content
characterizes the motion or the activity.

• Style (people) : Time-invariant person parameters that
characterize the person appearance (shape).

On the other hand, given an observation of certain per-
son at a certain body pose and given the learned generative
model we aim to be able to solve for both the body config-
uration representation (content) and the person parameter
(style). In our case the content is a continuous domain while
style is represented by the discrete style classes which exist
in the training data where we can interpolate intermediate
styles and/or intermediate contents.

We learn a view-based generative model in the form

ys
t = γ(xc

t ; a, b
s) (1)

where the image, ys
t , at time t and of style s is an instance

driven from a generative model where the function γ(·) is a
mapping function that maps from a representation of body
configuration xc

t (content) at time t into the image space
given mapping parameters a and style dependent parameter
bs that is time invariant1.

Suppose that we can learn a unified, style-invariant, non-
linearly embedded representation of the motion manifold
M in a low dimensional Euclidean embedding space, R

e,
then we can learn a set of style-dependent nonlinear map-
ping functions from the embedding space into the input
space, i.e., functions γs(xc

t) : R
e → R

d that maps from
embedding space with dimensionality e into the input space
(observation) with dimensionality d for style class s. Since
we consider nonlinear manifolds and the embedding is non-
linear, the use of nonlinear mapping is necessary. In this
paper we consider mapping functions of the form

ys
t = γs(xt) = Cs · ψ(xc

t ) (2)

1We use the superscript s, c to indicate which variables depend on style
or content respectively.



where Cs is a d ×N linear mapping and ψ(·) : R
e → R

N

is a nonlinear mapping whereN basis functions are used to
model the manifold in the embedding space, i.e.,

ψ(·) = [ψ1(·), · · · , ψN (·)]T

Given learned models of the form of equation 2, the style
can be decomposed in the linear mapping coefficient space
using bilinear model in a way similar to [19, 22]. There-
fore, input instance yt can be written as asymmetric bilinear
model in the linear mapping space as

yt = A×3 b
s ×2 ψ(xc

t ) (3)

where A is a third order tensor (3-way array) with dimen-
sionality d×N×J , bs is a style vector with dimensionality
J , and ×n denotes mode-n tensor product. Given the role
for style and content defined above, the previous equation
can be written as

yt = A×3 b
people ×2 ψ(xpose

t ) (4)

In the following sections we will describe the details for
fitting such model. Section 3 describes how to obtain a uni-
fied nonlinear embedding of the motion manifold. Section 4
describes how to learn nonlinear mappings in the form of
equation 2 and 3. Section 5 describes how to solve for both
the content and the style given an observation.

3. Unified Embedding

3.1. Nonlinear Dimensionality Reduction

We adapt an LLE framework [16]. Given the assumption
that each data point and its neighbors lie on a locally linear
patch of the manifold [16], each point (shape or appearance
instance) yi, i = 1, · · · , N can be reconstructed based on
a linear mapping

∑
j wijyj that weights its neighbors con-

tributions using the weights wij . In our case, the neighbor-
hood of each point is determined by itsK nearest neighbors
based on the distance in the input space (no temporal infor-
mation was used to define such neighbors). The objective is
to find such weights that minimize the global reconstruction
error,E(W ) =

∑
i |yi−

∑
j wijyj|2 i, j = 1 · · ·N, under

certain constraints. Optimal solution for such optimization
problem can be found by solving a least-squares problem as
was shown in[16].

Since the recovered weights W reflect the intrinsic ge-
ometric structure of the manifold, an embedded manifold
in a low dimensional space can be constructed using the
same weights. This can be achieved by solving for a set
of points X = {xi ∈ Re, i = 1 · · ·N} in a low dimen-
sion space, e � d, that minimize E(X) =

∑
i |xi −∑

j wijxj |2 i, j = 1 · · ·N, where in this case the weights
are fixed. Solving such problem can be achieved by solving
an eigenvector problem as was shown in [16].

Figure 2. Embedded gait manifold for a side view of the walker.
Sample frames from a walking cycle along the manifold with the
frame numbers shown to indicate the order. Ten walking cycles are
shown (300 frames).

Figure 2 shows an example of embedding a walking cy-
cle with 300 frames from a side view. We use a three dimen-
sional embedding since this is the least dimensional embed-
ding that can discriminate the different body poses through
the cycle. As can be noticed, the embedding can discrimi-
nate the two half cycles although the similarity (e.g., notice
that frames 25 and 39 are embedded as the farthest points
on the manifold). More results for embedding the gait man-
ifold can be obtained from [7]. One point that need to be
emphasized is that we do not use the temporal relation to
achieve the embedding, since the goal is to obtain an em-
bedding that preserves the geometry of the manifold. Tem-
poral relation can be used to determine the neighborhood of
each shape but that was found to lead to erroneous, artificial
embedding.

3.2. Embedding Multiple Manifolds

Given sequences for multiple people, we need to obtain
a unified embedding for the underlying body configuration
manifold. Nonlinear dimensionality reduction approaches
such as [18, 16, 3] are not able to embed multiple people
manifolds simultaneously. Although such approaches try to
capture the manifold geometry, typically, the distances be-
tween instances of the same person (within the same man-
ifold) is much smaller than distances between correspond-
ing points on different people’s manifolds. Therefore, they
tend to capture the intrinsic structure of each manifold sep-
arately without generalizing to capture inter-manifolds as-
pects. This is shown in figure 3-a where LLE is used to em-
bed three people’s manifolds where all the inputs are spa-
tially registered. As a result, the embedding shows separate
manifolds (e.g., in the left figure one manifold is degener-
ate to a point because the embedding is dominated by the
manifold with largest intra-distance.) Even if we force LLE
to include corresponding points on different manifolds to
each point’s neighbors, this result in artificial embedding
that does not capture the manifold geometry. Another fun-
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Figure 3. a) Embedding obtained by LLE for three people data
with two different K values. Inter-manifold distance dominates the
embedding. b) Separate embedding of three manifolds for three
people data. c) Unified manifold embedding X̃k

damental problem is that different people will have differ-
ent manifolds because the appearance (shape) is different,
which imposes different twists to the manifolds and there-
fore different geometry. This can be noticed in figure 7-b.

To achieve a unified embedding of a certain activity man-
ifold from multiple people data, each person’s manifold is
embedded separately using LLE. Each manifold point is
time mapped from 0 to 1. For the case of periodic motion,
such as gait, each cycle on the manifold is time warped from
0 to 1 given a corresponding origin point on the manifold,
denoted by to, where the cycles can be computed from the
geodesic distances to the origin. Given the embedded man-
ifold Xk for person k, a cubic spline mk(t) is fitted to the
manifold as a function of time, i.e., mk(t) : t → R

e where
t = 0 → 1 is the time variable. The manifold for person
k is sampled at N uniform time instances mk(ti) where
i = 1 · · ·N .

Given multiple manifolds a mean manifold Z(t i) is
learned by warping mk(ti) using non-rigid transformation
using an approach similar to [5]. We solve for a mean man-
ifold Z(ti) and a set of non-rigid transformations f(.;αk)
where the objective is to minimize the energy function

E(f) =
∑

k

∑
i

‖Z(ti) − f(mk(ti);αk)‖2 + λ‖Lf‖2

where λ is a regularization parameter and ‖Lf‖2 is a
smoothness term. In particular thin-plate spline (TPS) is
used for the nonrigid transformation. Given the transforma-

tion parametersαk, the whole data sets are warped to obtain
a unified imbedding X̃k for the k manifolds where

X̃k = f(Xk;αk), k = 1 · · ·K.
Figure 3-b,c shows an example of three different manifolds
and their warping into a unified manifold embedding.

4. Nonlinear Mapping

4.1. Learning Style Dependent Mappings

Let the sets of input image sequences be Yk = {yk
i ∈

Rd i = 1, · · · , Nk} and let their corresponding points on
the unified embedding space be Xk = {xk

i ∈ Re, i =
1, · · · , Nk} where e is the dimensionality of the embedding
space (e.g. e = 3 in the case of gait) and k = 1 · · ·K is the
person (style) index. Let the set of N centers representing
the mean manifold be Z = {zj ∈ Re, j = 1, · · · , N}.
We can learn nonlinear mappings between the centers Z
and each of the input sequence using generalized radial ba-
sis function interpolation GRBF [15], i.e., one mapping for
each style class k.

Let’s consider the case for k-th sequence. We will drop
the index k when it is implied from the context for simplic-
ity. We can solve for multiple interpolants f l : Re → R
where l is l-th dimension (pixel) in the input space and f l

is a radial basis function interpolant, i.e., we learn nonlin-
ear mappings from the embedding space to each individual
pixel in the input space. Of particular interest are functions
of the form

f l(x) = pl(x) +
N∑

i=1

wl
jφ(|x− zj |), (5)

where φ(·) is a real-valued basic function, wj are real coef-
ficients, | · | is the norm on Re (the embedding space). Typ-
ical choices for the basis function include thin-plate spline
(φ(u) = u2log(u)), the multiquadric (φ(u) =

√
u2 + a2),

Gaussian (φ(u) = e−au2
), biharmonic (φ(u) = u) and tri-

harmonic (φ(u) = u3) splines. pl is a linear polynomial
with coefficients cl, i.e., pl(x) = [1 x�] · cl. This linear
polynomial is essential to achieve approximate solution for
the inverse mapping as will be shown. The whole mapping
can be written in a matrix form as

fk(x) = Ck · ψ(x), (6)

where Ck is a d × (N + e+ 1) dimensional matrix with
the l-th row [wl

1 · · ·wl
N cl

�
] and the vector ψ(x) is

[φ(|x−z1|) · · ·φ(|x−zN |) 1 x�]�. The matrix Ck repre-
sents the coefficients for d different nonlinear mappings for
style class k, each from a low-dimension embedding space
into real numbers. To insure orthogonality and to make
the problem well posed, the following side condition con-
straints are imposed:

∑N
i=1 wipj(xi) = 0, j = 1, · · · ,m



where pj are the linear basis of p. Therefore the solution
for Ck can be obtained by directly solving the linear sys-
tems

(
A Px

P�
t 0(e+1)×(e+1)

)
k

Ck�
=

(
Yk

0(e+1)×d

)
, (7)

whereA,Px, Pt are defined for the k-th style as: A is Nk ×
N matrix with Aij = φ(|xk

i − zj |), i = 1 · · ·Nk, j =
1 · · ·N , Px is a Nk × (e+ 1) matrix with i-th row [1 xk

i
�],

Pt is a N × (e + 1) matrix with i-th row [1 z�
i ]. Yk is

(Nk×d) matrix containing the input images for style k, i.e.,
Yk = [yk

1 · · · yk
Nk

]�. Solution for Ck is guaranteed under
certain conditions on the basic functions used.

4.2. Separating Style

Given learned nonlinear mapping coefficients
C1, C2, · · · , CK for each person, the style parame-
ters can be decomposed by fitting an asymmetric bilinear
model [19] to the coefficient tensor. Let the coefficients be
arranged as a d×M×K tensor C, whereM = (N+e+1).
Therefore, we are looking for a decomposition in the form

C = Ac ×3 B
s

where Ac is d×M × J tensor containing content bases for
the RBF coefficient space and Bs = [b1 · · · bK ] is a J ×K
style coefficients. This decomposition can be achieved by
arranging the mapping coefficients as a dM ×K matrix as

C =




c11 · · · cK1
...

. . .
...

c1M · · · cKM


 (8)

where [ck1 , · · · , ckM ] are the columns for RBF coefficients
Ck. Given the matrix C style vectors and contents bases
can be obtained by singular value decomposition as C =
USV T where the content bases are the columns of US and
the style vectors are the rows of V .

5. Solving for Style and Content

Given a new input y ∈ Rd, it is required to find both
the content, i.e., the corresponding embedding coordinates
x ∈ Re on the manifold, and the person style parameters b s.
These parameters should minimize the reconstruction error
defined as

E(xc, bs) = ‖y −A× bs × ψ(xc)‖2

Solving for content: If the style vector, bs, is known, we
can solve for the content xc. Note that, in our case, the
content is a continuous variable in a nonlinearly embedded
space. However, we show here how to obtain a closed-form
solution for xc.

Each input yields a set of d nonlinear equations in e un-
knowns (or d nonlinear equations in one e-dimensional un-
known). Therefore, a solution for x∗ can be obtained by
least square solution for the over-constrained nonlinear sys-
tem x∗ = argxmin‖y − Bψ(x)‖2 where B = A × bs.
However, because of the linear polynomial part in the in-
terpolation function, the vector ψ(x) has a special form
that facilitates a closed-form least square linear approxi-
mation and, therefore, avoid solving the nonlinear system.
This can be achieved by obtaining the pseudo-inverse of
B = A × bs. Note that B has rank N since N distinc-
tive RBF centers are used. Therefore, the pseudo-inverse
can be obtained by decomposing B using SVD such that
B = USV � and, therefore, vector ψ(x) can be recovered
simply as ψ(x) = V ŚUT y where Ś is the diagonal matrix
obtained by taking the inverse of the nonzero singular val-
ues in the diagonal matrix S and setting the rest to zeros.
Linear approximation for the embedding coordinate x ∗ can
be obtained by taking the last e rows in the recovered vector
ψ(x).
Solving for style: If the embedding coordinate (content) is
known, we can solve for style vector bs. Given style classes
bk, k = 1, · · · ,K learned from the training data and given
the embedding coordinate x, the observation can be consid-
ered as drawn from a Gaussian mixture model centered at
A×bk×ψ(x) for each style class k. Therefore, observation
probability p(y|k, x) can be computed as

p(y|k, x) ∝ exp{−‖y −A× bk × ψ(x)‖2/(2σ2)}.

Style conditional class probabilities can be obtained as
p(k|x, y) = p(y|k, x)p(k|x)/p(y|x) where p(y|x) =∑

k p(y|x, k)p(k). A new style vector can then be ob-
tained as a linear combination of theK class style vectors as
bs =

∑
k wkb

k where the weightswk are set to be p(k|x, y).
Given the two steps described above we can solve for

both style bs and content xc in an EM-like iterative proce-
dure where in the E-step we calculate the content xc given
the style parameters and in the M-step we calculate new
style parameters bs given the content. The initial content
can be obtained using a mean style vector b̃s.

6. Experimental Result

Representation Without loss of generality, for the exper-
iments we show here, the following representations were
used:
Shape Representation: We represent each shape instance as
an implicit function y(x) at each pixel x such that y(x) = 0
on the contour, y(x) > 0 inside the contour, and y(x) < 0
outside the contour. We use a signed-distance function for
this purpose. Such representation imposes smoothness on
the distance between shapes. Given such representation, the
input shapes are points yi ∈ Rd, i = 1, · · · , N where d is
the same as the dimensionality of the input space and N



is the number of points. Implicit function representation is
typically used in level-set methods.
Appearance Representation: Appearance is represented di-
rectly in a vector form, i.e., each instance of appearance is
represented as points yi ∈ Rd, i = 1, · · · , N where d is the
dimensionality of the input space.
Experiment 1: In this experiment we use three people’s
silhouettes during a half walking cycle to separate the style
(person shape) from the content (body pose). The input is
three sequences containing 10, 11, 9 frames respectively.
The input silhouettes are shown in figure 4-a. Note that
the three sequences are not of equal length and the body
poses are not necessarily in correspondence. Since the in-
put size in this case is too small to be able to discover the
manifold geometry using LLE, we arbitrary embed the data
points on a circle as a topologically homomorphic manifold
(as an approximation of the manifold of half a cycle) where
each sequence is equally spaced along the circle. Embed-
ding is shown in figure 4-b. We selected 8 RBF centers at
8 quadrics on the circle. The model is then fitted to the
data in the form of equation 4 using TPS kernels. Figure 4-
d shows the RBF coefficients for the three people (one in
each row) where the last three columns are the polynomial
coefficients. Figure 4-c shows the style coefficients for the
three people and figure 4-e show the content bases.

Given the fitted model we can show some interesting re-
sults. First we can interpolate intermediate silhouettes for
each of the three people’s styles. This is shown in figure 4-
f where 16 intermediate poses were rendered. Notice that
the input contained only 9 to 11 data points for each per-
son. A closer look at the rendered silhouettes shows that
model can really interpolate intermediate silhouettes that
were never seen as inputs (e.g., person 1 column 4 and per-
son 3 columns 5, 15). We can also interpolate half walking
cycles at new styles. This is shown in figure 4-f where in-
termediate styles and intermediate contents were used.

We can also use the learned model to reconstruct noisy
and corrupted input instances in a way that preserve both the
body pose and the person style. Given an input silhouette
we solve for both the embedding coordinate and the style as
was described in section 5 and use the model to reconstruct
a corrected silhouette given the recovered pose and person
parameters. Figure 5 shows such reconstruction where we
used 48 noisy input silhouettes2 were used (16 for each per-
son shown at each row). The resulting people’s probabilities
are shown in figure 5-c and the resulting reconstructions are
shown in figure 5-b in the same order. Notice that the recon-
struction preserves both the correct body pose as well as the
correct person shape. Only two errors can be spotted which
are for inputs number 33,34 (last row, columns 2,3) where
the probability for person 2 was higher than the person 3
and therefore the reconstruction preserved the second per-

2All the silhouette data used in these experiments are from the CMU-
Mobogait data set

son style. Figure 6 shows another reconstruction example
where the learned model was used to reconstruct corrupted
inputs for person 3. The reconstruction preserve the person
style as well as the body pose.

(a) input noisy silhouettes

(b) reconstructions
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Figure 5. Reconstruction example
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Figure 6. Pose and style preserving reconstruction. Right: style
probabilities for each input

Experiment 2: In this experiment we used five sequences
for five different people 3 each containing about 300 frames
which are noisy. The learned manifolds are shown in fig-
ure 7-b which shows a different manifold for each person.
The learned unified manifold is also shown in figure 7-e.
Figure 7 shows interpolate walking sequences for the five
people generated by the learned model. The figure also
shows the learned style vectors. We evaluated style clas-
sifications using 40 frames for each person and the result is
shown in the figure with correct classification rate of 92%.
We also used the learned model to interpolate walks in new
styles. The last row in the figure shows interpolation be-
tween person 1 and person 4.

3The data are from CMU Mobogait database
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Figure 4. Learning style and content for a gait example

Experiment 3: Leaning a smile: In this experiment the
proposed model was used to learn the manifold of a smile
and separate the appearance (style) for 4 people 4. The in-
put sequences contain 27,31,29,27 frames respectively for
the smile motion. All the input sequences were tempo-
rally scaled from 0 to 1 then LLE were used to obtain a
one-dimensional embedding of the manifolds and a unified
embedding is obtained as was described in section 3. The
model was fitted using 8 equally spaced RBF centers along
the mean manifold. The first four rows of figure 8 show in-
terpolation of 10 intermediate faces at each of the learned
styles. As can be noticed, the model is able to correctly in-
terpolate the facial motion of the smile for the four people.
It is hard to prove in this case that the model is actually in-
terpolating new intermediate faces but we can easily show
interpolating smiles at new styles. This is shown in the last
three rows where the model is used to render smiles at in-
termediate styles.

7. Conclusion

We introduced a framework for separating style and con-
tent on manifolds representing dynamic objects. The frame-

4The images are from the CMU facial expression data set

work is based on decomposing the style parameters in the
space of nonlinear functions that maps between a learned
unified nonlinear embedding of multiple content manifolds
and the visual input space. The framework yields an unsu-
pervised procedure that handles dynamic, nonlinear mani-
folds. It also improves on past work in nonlinear dimension-
ality reduction by being able to handle multiple manifolds.
The proposed framework was shown to be able to separate
style and content on both the gait manifold and a simple
facial expression manifold. As mention in [16], an inter-
esting and important question is how to learn a parametric
mapping between the observation and nonlinear embedding
spaces. We partially addressed this question in this paper.
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